Loading…
Multiple Electronic and Structural Factors Control Cyclobutane Pyrimidine Dimer and 6–4 Thymine–Thymine Photodimerization in a DNA Duplex
The T–T photodimerization paths leading to the formation of cyclobutane pyrimidine dimer (CPD) and 6–4 pyrimidine pyrimidone (64‐PP), the two main DNA photolesions, have been resolved for a T–T step in a DNA duplex by two complementary state‐of‐the‐art quantum mechanical approaches: QM(CASPT2//CASSC...
Saved in:
Published in: | Chemistry : a European journal 2017-10, Vol.23 (60), p.15177-15188 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The T–T photodimerization paths leading to the formation of cyclobutane pyrimidine dimer (CPD) and 6–4 pyrimidine pyrimidone (64‐PP), the two main DNA photolesions, have been resolved for a T–T step in a DNA duplex by two complementary state‐of‐the‐art quantum mechanical approaches: QM(CASPT2//CASSCF)/MM and TD‐DFT/PCM. Based on the analysis of several different representative structures, we define a new‐ensemble of cooperating geometrical and electronic factors (besides the distance between the reacting bonds) ruling T–T photodimerization in DNA. CPD is formed by a barrierless path on an exciton state delocalized over the two bases. Large interbase stacking and shift values, together with a small pseudorotation phase angle for T at the 3′‐end, favor this reaction. The oxetane intermediate, leading to a 64‐PP adduct, is formed on a singlet T→T charge‐transfer state and is favored by a large interbase angle and slide values. A small energy barrier ( |
---|---|
ISSN: | 0947-6539 1521-3765 |
DOI: | 10.1002/chem.201703237 |