Loading…

Comparative methylome analysis of ICF patients identifies heterochromatin loci that require ZBTB24, CDCA7 and HELLS for their methylated state

Abstract Alterations of DNA methylation landscapes and machinery are a hallmark of many human diseases. A prominent case is the ICF syndrome, a rare autosomal recessive immunological/neurological disorder diagnosed by the loss of DNA methylation at (peri)centromeric repeats and its associated chromo...

Full description

Saved in:
Bibliographic Details
Published in:Human molecular genetics 2018-07, Vol.27 (14), p.2409-2424
Main Authors: Velasco, Guillaume, Grillo, Giacomo, Touleimat, Nizar, Ferry, Laure, Ivkovic, Ivana, Ribierre, Florence, Deleuze, Jean-François, Chantalat, Sophie, Picard, Capucine, Francastel, Claire
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Alterations of DNA methylation landscapes and machinery are a hallmark of many human diseases. A prominent case is the ICF syndrome, a rare autosomal recessive immunological/neurological disorder diagnosed by the loss of DNA methylation at (peri)centromeric repeats and its associated chromosomal instability. It is caused by mutations in the de novo DNA methyltransferase DNMT3B in about half of the patients (ICF1). In the remainder, the striking identification of mutations in factors devoid of DNA methyltransferase activity, ZBTB24 (ICF2), CDCA7 (ICF3) or HELLS (ICF4), raised key questions about common or distinguishing DNA methylation alterations downstream of these mutations and hence, about the functional link between the four factors. Here, we established the first comparative methylation profiling in ICF patients with all four genotypes and we provide evidence that, despite unifying hypomethylation of pericentromeric repeats and a few common loci, methylation profiling clearly distinguished ICF1 from ICF2, 3 and 4 patients. Using available genomic and epigenomic annotations to characterize regions prone to loss of DNA methylation downstream of ICF mutations, we found that ZBTB24, CDCA7 and HELLS mutations affect CpG-poor regions with heterochromatin features. Among these, we identified clusters of coding and non-coding genes mostly expressed in a monoallelic manner and implicated in neuronal development, consistent with the clinical spectrum of these patients' subgroups. Hence, beyond providing blood-based biomarkers of dysfunction of ICF factors, our comparative study unveiled new players to consider at certain heterochromatin regions of the human genome.
ISSN:0964-6906
1460-2083
DOI:10.1093/hmg/ddy130