Loading…
The Chlamydomonas mex1 mutant shows impaired starch mobilization without maltose accumulation
The MEX1 locus of Chlamydomonas reinhardtii was identified in a genetic screen as a factor that affects starch metabolism. Mutation of MEX1 causes a slow-down in the mobilization of storage polysaccharide. Cosegregation and functional complementation analyses were used to assess the involvement of t...
Saved in:
Published in: | Journal of experimental botany 2017-11, Vol.68 (18), p.5177-5189 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-c3efa173107fe2d05861cd96ba518fcb7c7f77f4ab25ab989ace754b90a78ca03 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-c3efa173107fe2d05861cd96ba518fcb7c7f77f4ab25ab989ace754b90a78ca03 |
container_end_page | 5189 |
container_issue | 18 |
container_start_page | 5177 |
container_title | Journal of experimental botany |
container_volume | 68 |
creator | Findinier, Justin Tunçay, Hande Schulz-Raffelt, Miriam Deschamps, Philippe Spriet, Corentin Lacroix, Jean-Marie Duchêne, Thierry Szydlowski, Nicolas Li-Beisson, Yonghua Peltier, Gilles D’Hulst, Christophe Wattebled, Fabrice Dauvillée, David |
description | The MEX1 locus of Chlamydomonas reinhardtii was identified in a genetic screen as a factor that affects starch metabolism. Mutation of MEX1 causes a slow-down in the mobilization of storage polysaccharide. Cosegregation and functional complementation analyses were used to assess the involvement of the Mex1 protein in starch degradation. Heterologous expression experiments performed in Escherichia coli and Arabidopsis thaliana allowed us to test the capacity of the algal protein in maltose export. In contrast to the A. thaliana mex1 mutant, the mutation in C. reinhardtii does not lead to maltose accumulation and growth impairment. Although localized in the plastid envelope, the algal protein does not transport maltose efficiently across the envelope, but partly complements the higher plant mutant. Both Mex orthologs restore the growth of the E. coli ptsG mutant strain on glucose-containing medium, revealing the capacity of these proteins to transport this hexose. These findings suggest that Mex1 is essential for starch mobilization in both Chlamydomonas and Arabidopsis, and that this protein family may support several functions and not only be restricted to maltose export across the plastidial envelope. |
doi_str_mv | 10.1093/jxb/erx343 |
format | article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_02023216v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26501600</jstor_id><sourcerecordid>26501600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-c3efa173107fe2d05861cd96ba518fcb7c7f77f4ab25ab989ace754b90a78ca03</originalsourceid><addsrcrecordid>eNpFkMFu1DAQQC0EotvChTvIR4q0dGzHcXysVi1FWolLOSJr4jiKV_F6sR265eubktJqpJnDPL3DI-QDg68MtLjYHdsLl46iEq_IilU1rHkl2GuyAuB8DVqqE3Ka8w4AJEj5lpxwDRXUkq3Ir9vB0c0wYrjvYoh7zDS4I6NhKrgvNA_xLlMfDuiT62gumOxAQ2z96P9i8XFP73wZ4lRowLHE7ChaO4Vp_Pd8R970OGb3_umekZ_XV7ebm_X2x7fvm8vt2gqly7xdj0wJBqp3vAPZ1Mx2um5Rsqa3rbKqV6qvsOUSW91otE7JqtWAqrEI4oycL94BR3NIPmC6NxG9ubncGuvQAAcuOKv_sJn9vLCHFH9PLhcTfLZuHHHv4pQN05LP01SP2i8LalPMObn-2c3APKY3c3qzpJ_hT0_eqQ2ue0b_t56BjwuwyyWml38tgdUA4gHBiYrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952525840</pqid></control><display><type>article</type><title>The Chlamydomonas mex1 mutant shows impaired starch mobilization without maltose accumulation</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Findinier, Justin ; Tunçay, Hande ; Schulz-Raffelt, Miriam ; Deschamps, Philippe ; Spriet, Corentin ; Lacroix, Jean-Marie ; Duchêne, Thierry ; Szydlowski, Nicolas ; Li-Beisson, Yonghua ; Peltier, Gilles ; D’Hulst, Christophe ; Wattebled, Fabrice ; Dauvillée, David</creator><creatorcontrib>Findinier, Justin ; Tunçay, Hande ; Schulz-Raffelt, Miriam ; Deschamps, Philippe ; Spriet, Corentin ; Lacroix, Jean-Marie ; Duchêne, Thierry ; Szydlowski, Nicolas ; Li-Beisson, Yonghua ; Peltier, Gilles ; D’Hulst, Christophe ; Wattebled, Fabrice ; Dauvillée, David</creatorcontrib><description>The MEX1 locus of Chlamydomonas reinhardtii was identified in a genetic screen as a factor that affects starch metabolism. Mutation of MEX1 causes a slow-down in the mobilization of storage polysaccharide. Cosegregation and functional complementation analyses were used to assess the involvement of the Mex1 protein in starch degradation. Heterologous expression experiments performed in Escherichia coli and Arabidopsis thaliana allowed us to test the capacity of the algal protein in maltose export. In contrast to the A. thaliana mex1 mutant, the mutation in C. reinhardtii does not lead to maltose accumulation and growth impairment. Although localized in the plastid envelope, the algal protein does not transport maltose efficiently across the envelope, but partly complements the higher plant mutant. Both Mex orthologs restore the growth of the E. coli ptsG mutant strain on glucose-containing medium, revealing the capacity of these proteins to transport this hexose. These findings suggest that Mex1 is essential for starch mobilization in both Chlamydomonas and Arabidopsis, and that this protein family may support several functions and not only be restricted to maltose export across the plastidial envelope.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/erx343</identifier><identifier>PMID: 29040651</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algal Proteins - genetics ; Algal Proteins - metabolism ; Arabidopsis - cytology ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Biological Transport ; Chlamydomonas reinhardtii - genetics ; Chlamydomonas reinhardtii - metabolism ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene Expression ; Genes, Reporter ; Life Sciences ; Maltose - metabolism ; Monosaccharide Transport Proteins - genetics ; Monosaccharide Transport Proteins - metabolism ; Mutation ; Photosynthesis and Metabolism ; Phylogeny ; Plastids - metabolism ; Recombinant Fusion Proteins ; Seedlings - cytology ; Seedlings - genetics ; Seedlings - metabolism ; Starch - metabolism ; Transgenes</subject><ispartof>Journal of experimental botany, 2017-11, Vol.68 (18), p.5177-5189</ispartof><rights>The Author 2017</rights><rights>The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-c3efa173107fe2d05861cd96ba518fcb7c7f77f4ab25ab989ace754b90a78ca03</citedby><cites>FETCH-LOGICAL-c379t-c3efa173107fe2d05861cd96ba518fcb7c7f77f4ab25ab989ace754b90a78ca03</cites><orcidid>0000-0003-3773-9573 ; 0000-0003-1064-1816 ; 0000-0003-0041-8557 ; 0000-0002-1427-8172 ; 0000-0002-0751-9193 ; 0000-0003-4291-8074 ; 0000-0002-5805-3426 ; 0000-0002-2226-3931 ; 0000-0002-5556-9099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26501600$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26501600$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29040651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cea.hal.science/cea-02023216$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Findinier, Justin</creatorcontrib><creatorcontrib>Tunçay, Hande</creatorcontrib><creatorcontrib>Schulz-Raffelt, Miriam</creatorcontrib><creatorcontrib>Deschamps, Philippe</creatorcontrib><creatorcontrib>Spriet, Corentin</creatorcontrib><creatorcontrib>Lacroix, Jean-Marie</creatorcontrib><creatorcontrib>Duchêne, Thierry</creatorcontrib><creatorcontrib>Szydlowski, Nicolas</creatorcontrib><creatorcontrib>Li-Beisson, Yonghua</creatorcontrib><creatorcontrib>Peltier, Gilles</creatorcontrib><creatorcontrib>D’Hulst, Christophe</creatorcontrib><creatorcontrib>Wattebled, Fabrice</creatorcontrib><creatorcontrib>Dauvillée, David</creatorcontrib><title>The Chlamydomonas mex1 mutant shows impaired starch mobilization without maltose accumulation</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>The MEX1 locus of Chlamydomonas reinhardtii was identified in a genetic screen as a factor that affects starch metabolism. Mutation of MEX1 causes a slow-down in the mobilization of storage polysaccharide. Cosegregation and functional complementation analyses were used to assess the involvement of the Mex1 protein in starch degradation. Heterologous expression experiments performed in Escherichia coli and Arabidopsis thaliana allowed us to test the capacity of the algal protein in maltose export. In contrast to the A. thaliana mex1 mutant, the mutation in C. reinhardtii does not lead to maltose accumulation and growth impairment. Although localized in the plastid envelope, the algal protein does not transport maltose efficiently across the envelope, but partly complements the higher plant mutant. Both Mex orthologs restore the growth of the E. coli ptsG mutant strain on glucose-containing medium, revealing the capacity of these proteins to transport this hexose. These findings suggest that Mex1 is essential for starch mobilization in both Chlamydomonas and Arabidopsis, and that this protein family may support several functions and not only be restricted to maltose export across the plastidial envelope.</description><subject>Algal Proteins - genetics</subject><subject>Algal Proteins - metabolism</subject><subject>Arabidopsis - cytology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Biological Transport</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Expression</subject><subject>Genes, Reporter</subject><subject>Life Sciences</subject><subject>Maltose - metabolism</subject><subject>Monosaccharide Transport Proteins - genetics</subject><subject>Monosaccharide Transport Proteins - metabolism</subject><subject>Mutation</subject><subject>Photosynthesis and Metabolism</subject><subject>Phylogeny</subject><subject>Plastids - metabolism</subject><subject>Recombinant Fusion Proteins</subject><subject>Seedlings - cytology</subject><subject>Seedlings - genetics</subject><subject>Seedlings - metabolism</subject><subject>Starch - metabolism</subject><subject>Transgenes</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFkMFu1DAQQC0EotvChTvIR4q0dGzHcXysVi1FWolLOSJr4jiKV_F6sR265eubktJqpJnDPL3DI-QDg68MtLjYHdsLl46iEq_IilU1rHkl2GuyAuB8DVqqE3Ka8w4AJEj5lpxwDRXUkq3Ir9vB0c0wYrjvYoh7zDS4I6NhKrgvNA_xLlMfDuiT62gumOxAQ2z96P9i8XFP73wZ4lRowLHE7ChaO4Vp_Pd8R970OGb3_umekZ_XV7ebm_X2x7fvm8vt2gqly7xdj0wJBqp3vAPZ1Mx2um5Rsqa3rbKqV6qvsOUSW91otE7JqtWAqrEI4oycL94BR3NIPmC6NxG9ubncGuvQAAcuOKv_sJn9vLCHFH9PLhcTfLZuHHHv4pQN05LP01SP2i8LalPMObn-2c3APKY3c3qzpJ_hT0_eqQ2ue0b_t56BjwuwyyWml38tgdUA4gHBiYrw</recordid><startdate>20171102</startdate><enddate>20171102</enddate><creator>Findinier, Justin</creator><creator>Tunçay, Hande</creator><creator>Schulz-Raffelt, Miriam</creator><creator>Deschamps, Philippe</creator><creator>Spriet, Corentin</creator><creator>Lacroix, Jean-Marie</creator><creator>Duchêne, Thierry</creator><creator>Szydlowski, Nicolas</creator><creator>Li-Beisson, Yonghua</creator><creator>Peltier, Gilles</creator><creator>D’Hulst, Christophe</creator><creator>Wattebled, Fabrice</creator><creator>Dauvillée, David</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3773-9573</orcidid><orcidid>https://orcid.org/0000-0003-1064-1816</orcidid><orcidid>https://orcid.org/0000-0003-0041-8557</orcidid><orcidid>https://orcid.org/0000-0002-1427-8172</orcidid><orcidid>https://orcid.org/0000-0002-0751-9193</orcidid><orcidid>https://orcid.org/0000-0003-4291-8074</orcidid><orcidid>https://orcid.org/0000-0002-5805-3426</orcidid><orcidid>https://orcid.org/0000-0002-2226-3931</orcidid><orcidid>https://orcid.org/0000-0002-5556-9099</orcidid></search><sort><creationdate>20171102</creationdate><title>The Chlamydomonas mex1 mutant shows impaired starch mobilization without maltose accumulation</title><author>Findinier, Justin ; Tunçay, Hande ; Schulz-Raffelt, Miriam ; Deschamps, Philippe ; Spriet, Corentin ; Lacroix, Jean-Marie ; Duchêne, Thierry ; Szydlowski, Nicolas ; Li-Beisson, Yonghua ; Peltier, Gilles ; D’Hulst, Christophe ; Wattebled, Fabrice ; Dauvillée, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-c3efa173107fe2d05861cd96ba518fcb7c7f77f4ab25ab989ace754b90a78ca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algal Proteins - genetics</topic><topic>Algal Proteins - metabolism</topic><topic>Arabidopsis - cytology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Biological Transport</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Expression</topic><topic>Genes, Reporter</topic><topic>Life Sciences</topic><topic>Maltose - metabolism</topic><topic>Monosaccharide Transport Proteins - genetics</topic><topic>Monosaccharide Transport Proteins - metabolism</topic><topic>Mutation</topic><topic>Photosynthesis and Metabolism</topic><topic>Phylogeny</topic><topic>Plastids - metabolism</topic><topic>Recombinant Fusion Proteins</topic><topic>Seedlings - cytology</topic><topic>Seedlings - genetics</topic><topic>Seedlings - metabolism</topic><topic>Starch - metabolism</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Findinier, Justin</creatorcontrib><creatorcontrib>Tunçay, Hande</creatorcontrib><creatorcontrib>Schulz-Raffelt, Miriam</creatorcontrib><creatorcontrib>Deschamps, Philippe</creatorcontrib><creatorcontrib>Spriet, Corentin</creatorcontrib><creatorcontrib>Lacroix, Jean-Marie</creatorcontrib><creatorcontrib>Duchêne, Thierry</creatorcontrib><creatorcontrib>Szydlowski, Nicolas</creatorcontrib><creatorcontrib>Li-Beisson, Yonghua</creatorcontrib><creatorcontrib>Peltier, Gilles</creatorcontrib><creatorcontrib>D’Hulst, Christophe</creatorcontrib><creatorcontrib>Wattebled, Fabrice</creatorcontrib><creatorcontrib>Dauvillée, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Findinier, Justin</au><au>Tunçay, Hande</au><au>Schulz-Raffelt, Miriam</au><au>Deschamps, Philippe</au><au>Spriet, Corentin</au><au>Lacroix, Jean-Marie</au><au>Duchêne, Thierry</au><au>Szydlowski, Nicolas</au><au>Li-Beisson, Yonghua</au><au>Peltier, Gilles</au><au>D’Hulst, Christophe</au><au>Wattebled, Fabrice</au><au>Dauvillée, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Chlamydomonas mex1 mutant shows impaired starch mobilization without maltose accumulation</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2017-11-02</date><risdate>2017</risdate><volume>68</volume><issue>18</issue><spage>5177</spage><epage>5189</epage><pages>5177-5189</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><abstract>The MEX1 locus of Chlamydomonas reinhardtii was identified in a genetic screen as a factor that affects starch metabolism. Mutation of MEX1 causes a slow-down in the mobilization of storage polysaccharide. Cosegregation and functional complementation analyses were used to assess the involvement of the Mex1 protein in starch degradation. Heterologous expression experiments performed in Escherichia coli and Arabidopsis thaliana allowed us to test the capacity of the algal protein in maltose export. In contrast to the A. thaliana mex1 mutant, the mutation in C. reinhardtii does not lead to maltose accumulation and growth impairment. Although localized in the plastid envelope, the algal protein does not transport maltose efficiently across the envelope, but partly complements the higher plant mutant. Both Mex orthologs restore the growth of the E. coli ptsG mutant strain on glucose-containing medium, revealing the capacity of these proteins to transport this hexose. These findings suggest that Mex1 is essential for starch mobilization in both Chlamydomonas and Arabidopsis, and that this protein family may support several functions and not only be restricted to maltose export across the plastidial envelope.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29040651</pmid><doi>10.1093/jxb/erx343</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3773-9573</orcidid><orcidid>https://orcid.org/0000-0003-1064-1816</orcidid><orcidid>https://orcid.org/0000-0003-0041-8557</orcidid><orcidid>https://orcid.org/0000-0002-1427-8172</orcidid><orcidid>https://orcid.org/0000-0002-0751-9193</orcidid><orcidid>https://orcid.org/0000-0003-4291-8074</orcidid><orcidid>https://orcid.org/0000-0002-5805-3426</orcidid><orcidid>https://orcid.org/0000-0002-2226-3931</orcidid><orcidid>https://orcid.org/0000-0002-5556-9099</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-0957 |
ispartof | Journal of experimental botany, 2017-11, Vol.68 (18), p.5177-5189 |
issn | 0022-0957 1460-2431 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_cea_02023216v1 |
source | JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online |
subjects | Algal Proteins - genetics Algal Proteins - metabolism Arabidopsis - cytology Arabidopsis - genetics Arabidopsis - metabolism Biological Transport Chlamydomonas reinhardtii - genetics Chlamydomonas reinhardtii - metabolism Escherichia coli - genetics Escherichia coli - metabolism Gene Expression Genes, Reporter Life Sciences Maltose - metabolism Monosaccharide Transport Proteins - genetics Monosaccharide Transport Proteins - metabolism Mutation Photosynthesis and Metabolism Phylogeny Plastids - metabolism Recombinant Fusion Proteins Seedlings - cytology Seedlings - genetics Seedlings - metabolism Starch - metabolism Transgenes |
title | The Chlamydomonas mex1 mutant shows impaired starch mobilization without maltose accumulation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Chlamydomonas%20mex1%20mutant%20shows%20impaired%20starch%20mobilization%20without%20maltose%20accumulation&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Findinier,%20Justin&rft.date=2017-11-02&rft.volume=68&rft.issue=18&rft.spage=5177&rft.epage=5189&rft.pages=5177-5189&rft.issn=0022-0957&rft.eissn=1460-2431&rft_id=info:doi/10.1093/jxb/erx343&rft_dat=%3Cjstor_hal_p%3E26501600%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-c3efa173107fe2d05861cd96ba518fcb7c7f77f4ab25ab989ace754b90a78ca03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1952525840&rft_id=info:pmid/29040651&rft_jstor_id=26501600&rfr_iscdi=true |