Loading…

The Chlamydomonas mex1 mutant shows impaired starch mobilization without maltose accumulation

The MEX1 locus of Chlamydomonas reinhardtii was identified in a genetic screen as a factor that affects starch metabolism. Mutation of MEX1 causes a slow-down in the mobilization of storage polysaccharide. Cosegregation and functional complementation analyses were used to assess the involvement of t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of experimental botany 2017-11, Vol.68 (18), p.5177-5189
Main Authors: Findinier, Justin, Tunçay, Hande, Schulz-Raffelt, Miriam, Deschamps, Philippe, Spriet, Corentin, Lacroix, Jean-Marie, Duchêne, Thierry, Szydlowski, Nicolas, Li-Beisson, Yonghua, Peltier, Gilles, D’Hulst, Christophe, Wattebled, Fabrice, Dauvillée, David
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c379t-c3efa173107fe2d05861cd96ba518fcb7c7f77f4ab25ab989ace754b90a78ca03
cites cdi_FETCH-LOGICAL-c379t-c3efa173107fe2d05861cd96ba518fcb7c7f77f4ab25ab989ace754b90a78ca03
container_end_page 5189
container_issue 18
container_start_page 5177
container_title Journal of experimental botany
container_volume 68
creator Findinier, Justin
Tunçay, Hande
Schulz-Raffelt, Miriam
Deschamps, Philippe
Spriet, Corentin
Lacroix, Jean-Marie
Duchêne, Thierry
Szydlowski, Nicolas
Li-Beisson, Yonghua
Peltier, Gilles
D’Hulst, Christophe
Wattebled, Fabrice
Dauvillée, David
description The MEX1 locus of Chlamydomonas reinhardtii was identified in a genetic screen as a factor that affects starch metabolism. Mutation of MEX1 causes a slow-down in the mobilization of storage polysaccharide. Cosegregation and functional complementation analyses were used to assess the involvement of the Mex1 protein in starch degradation. Heterologous expression experiments performed in Escherichia coli and Arabidopsis thaliana allowed us to test the capacity of the algal protein in maltose export. In contrast to the A. thaliana mex1 mutant, the mutation in C. reinhardtii does not lead to maltose accumulation and growth impairment. Although localized in the plastid envelope, the algal protein does not transport maltose efficiently across the envelope, but partly complements the higher plant mutant. Both Mex orthologs restore the growth of the E. coli ptsG mutant strain on glucose-containing medium, revealing the capacity of these proteins to transport this hexose. These findings suggest that Mex1 is essential for starch mobilization in both Chlamydomonas and Arabidopsis, and that this protein family may support several functions and not only be restricted to maltose export across the plastidial envelope.
doi_str_mv 10.1093/jxb/erx343
format article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_02023216v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26501600</jstor_id><sourcerecordid>26501600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-c3efa173107fe2d05861cd96ba518fcb7c7f77f4ab25ab989ace754b90a78ca03</originalsourceid><addsrcrecordid>eNpFkMFu1DAQQC0EotvChTvIR4q0dGzHcXysVi1FWolLOSJr4jiKV_F6sR265eubktJqpJnDPL3DI-QDg68MtLjYHdsLl46iEq_IilU1rHkl2GuyAuB8DVqqE3Ka8w4AJEj5lpxwDRXUkq3Ir9vB0c0wYrjvYoh7zDS4I6NhKrgvNA_xLlMfDuiT62gumOxAQ2z96P9i8XFP73wZ4lRowLHE7ChaO4Vp_Pd8R970OGb3_umekZ_XV7ebm_X2x7fvm8vt2gqly7xdj0wJBqp3vAPZ1Mx2um5Rsqa3rbKqV6qvsOUSW91otE7JqtWAqrEI4oycL94BR3NIPmC6NxG9ubncGuvQAAcuOKv_sJn9vLCHFH9PLhcTfLZuHHHv4pQN05LP01SP2i8LalPMObn-2c3APKY3c3qzpJ_hT0_eqQ2ue0b_t56BjwuwyyWml38tgdUA4gHBiYrw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1952525840</pqid></control><display><type>article</type><title>The Chlamydomonas mex1 mutant shows impaired starch mobilization without maltose accumulation</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Oxford Journals Online</source><creator>Findinier, Justin ; Tunçay, Hande ; Schulz-Raffelt, Miriam ; Deschamps, Philippe ; Spriet, Corentin ; Lacroix, Jean-Marie ; Duchêne, Thierry ; Szydlowski, Nicolas ; Li-Beisson, Yonghua ; Peltier, Gilles ; D’Hulst, Christophe ; Wattebled, Fabrice ; Dauvillée, David</creator><creatorcontrib>Findinier, Justin ; Tunçay, Hande ; Schulz-Raffelt, Miriam ; Deschamps, Philippe ; Spriet, Corentin ; Lacroix, Jean-Marie ; Duchêne, Thierry ; Szydlowski, Nicolas ; Li-Beisson, Yonghua ; Peltier, Gilles ; D’Hulst, Christophe ; Wattebled, Fabrice ; Dauvillée, David</creatorcontrib><description>The MEX1 locus of Chlamydomonas reinhardtii was identified in a genetic screen as a factor that affects starch metabolism. Mutation of MEX1 causes a slow-down in the mobilization of storage polysaccharide. Cosegregation and functional complementation analyses were used to assess the involvement of the Mex1 protein in starch degradation. Heterologous expression experiments performed in Escherichia coli and Arabidopsis thaliana allowed us to test the capacity of the algal protein in maltose export. In contrast to the A. thaliana mex1 mutant, the mutation in C. reinhardtii does not lead to maltose accumulation and growth impairment. Although localized in the plastid envelope, the algal protein does not transport maltose efficiently across the envelope, but partly complements the higher plant mutant. Both Mex orthologs restore the growth of the E. coli ptsG mutant strain on glucose-containing medium, revealing the capacity of these proteins to transport this hexose. These findings suggest that Mex1 is essential for starch mobilization in both Chlamydomonas and Arabidopsis, and that this protein family may support several functions and not only be restricted to maltose export across the plastidial envelope.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/erx343</identifier><identifier>PMID: 29040651</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algal Proteins - genetics ; Algal Proteins - metabolism ; Arabidopsis - cytology ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Biological Transport ; Chlamydomonas reinhardtii - genetics ; Chlamydomonas reinhardtii - metabolism ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Gene Expression ; Genes, Reporter ; Life Sciences ; Maltose - metabolism ; Monosaccharide Transport Proteins - genetics ; Monosaccharide Transport Proteins - metabolism ; Mutation ; Photosynthesis and Metabolism ; Phylogeny ; Plastids - metabolism ; Recombinant Fusion Proteins ; Seedlings - cytology ; Seedlings - genetics ; Seedlings - metabolism ; Starch - metabolism ; Transgenes</subject><ispartof>Journal of experimental botany, 2017-11, Vol.68 (18), p.5177-5189</ispartof><rights>The Author 2017</rights><rights>The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-c3efa173107fe2d05861cd96ba518fcb7c7f77f4ab25ab989ace754b90a78ca03</citedby><cites>FETCH-LOGICAL-c379t-c3efa173107fe2d05861cd96ba518fcb7c7f77f4ab25ab989ace754b90a78ca03</cites><orcidid>0000-0003-3773-9573 ; 0000-0003-1064-1816 ; 0000-0003-0041-8557 ; 0000-0002-1427-8172 ; 0000-0002-0751-9193 ; 0000-0003-4291-8074 ; 0000-0002-5805-3426 ; 0000-0002-2226-3931 ; 0000-0002-5556-9099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26501600$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26501600$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29040651$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cea.hal.science/cea-02023216$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Findinier, Justin</creatorcontrib><creatorcontrib>Tunçay, Hande</creatorcontrib><creatorcontrib>Schulz-Raffelt, Miriam</creatorcontrib><creatorcontrib>Deschamps, Philippe</creatorcontrib><creatorcontrib>Spriet, Corentin</creatorcontrib><creatorcontrib>Lacroix, Jean-Marie</creatorcontrib><creatorcontrib>Duchêne, Thierry</creatorcontrib><creatorcontrib>Szydlowski, Nicolas</creatorcontrib><creatorcontrib>Li-Beisson, Yonghua</creatorcontrib><creatorcontrib>Peltier, Gilles</creatorcontrib><creatorcontrib>D’Hulst, Christophe</creatorcontrib><creatorcontrib>Wattebled, Fabrice</creatorcontrib><creatorcontrib>Dauvillée, David</creatorcontrib><title>The Chlamydomonas mex1 mutant shows impaired starch mobilization without maltose accumulation</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>The MEX1 locus of Chlamydomonas reinhardtii was identified in a genetic screen as a factor that affects starch metabolism. Mutation of MEX1 causes a slow-down in the mobilization of storage polysaccharide. Cosegregation and functional complementation analyses were used to assess the involvement of the Mex1 protein in starch degradation. Heterologous expression experiments performed in Escherichia coli and Arabidopsis thaliana allowed us to test the capacity of the algal protein in maltose export. In contrast to the A. thaliana mex1 mutant, the mutation in C. reinhardtii does not lead to maltose accumulation and growth impairment. Although localized in the plastid envelope, the algal protein does not transport maltose efficiently across the envelope, but partly complements the higher plant mutant. Both Mex orthologs restore the growth of the E. coli ptsG mutant strain on glucose-containing medium, revealing the capacity of these proteins to transport this hexose. These findings suggest that Mex1 is essential for starch mobilization in both Chlamydomonas and Arabidopsis, and that this protein family may support several functions and not only be restricted to maltose export across the plastidial envelope.</description><subject>Algal Proteins - genetics</subject><subject>Algal Proteins - metabolism</subject><subject>Arabidopsis - cytology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Biological Transport</subject><subject>Chlamydomonas reinhardtii - genetics</subject><subject>Chlamydomonas reinhardtii - metabolism</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Gene Expression</subject><subject>Genes, Reporter</subject><subject>Life Sciences</subject><subject>Maltose - metabolism</subject><subject>Monosaccharide Transport Proteins - genetics</subject><subject>Monosaccharide Transport Proteins - metabolism</subject><subject>Mutation</subject><subject>Photosynthesis and Metabolism</subject><subject>Phylogeny</subject><subject>Plastids - metabolism</subject><subject>Recombinant Fusion Proteins</subject><subject>Seedlings - cytology</subject><subject>Seedlings - genetics</subject><subject>Seedlings - metabolism</subject><subject>Starch - metabolism</subject><subject>Transgenes</subject><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpFkMFu1DAQQC0EotvChTvIR4q0dGzHcXysVi1FWolLOSJr4jiKV_F6sR265eubktJqpJnDPL3DI-QDg68MtLjYHdsLl46iEq_IilU1rHkl2GuyAuB8DVqqE3Ka8w4AJEj5lpxwDRXUkq3Ir9vB0c0wYrjvYoh7zDS4I6NhKrgvNA_xLlMfDuiT62gumOxAQ2z96P9i8XFP73wZ4lRowLHE7ChaO4Vp_Pd8R970OGb3_umekZ_XV7ebm_X2x7fvm8vt2gqly7xdj0wJBqp3vAPZ1Mx2um5Rsqa3rbKqV6qvsOUSW91otE7JqtWAqrEI4oycL94BR3NIPmC6NxG9ubncGuvQAAcuOKv_sJn9vLCHFH9PLhcTfLZuHHHv4pQN05LP01SP2i8LalPMObn-2c3APKY3c3qzpJ_hT0_eqQ2ue0b_t56BjwuwyyWml38tgdUA4gHBiYrw</recordid><startdate>20171102</startdate><enddate>20171102</enddate><creator>Findinier, Justin</creator><creator>Tunçay, Hande</creator><creator>Schulz-Raffelt, Miriam</creator><creator>Deschamps, Philippe</creator><creator>Spriet, Corentin</creator><creator>Lacroix, Jean-Marie</creator><creator>Duchêne, Thierry</creator><creator>Szydlowski, Nicolas</creator><creator>Li-Beisson, Yonghua</creator><creator>Peltier, Gilles</creator><creator>D’Hulst, Christophe</creator><creator>Wattebled, Fabrice</creator><creator>Dauvillée, David</creator><general>Oxford University Press</general><general>Oxford University Press (OUP)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3773-9573</orcidid><orcidid>https://orcid.org/0000-0003-1064-1816</orcidid><orcidid>https://orcid.org/0000-0003-0041-8557</orcidid><orcidid>https://orcid.org/0000-0002-1427-8172</orcidid><orcidid>https://orcid.org/0000-0002-0751-9193</orcidid><orcidid>https://orcid.org/0000-0003-4291-8074</orcidid><orcidid>https://orcid.org/0000-0002-5805-3426</orcidid><orcidid>https://orcid.org/0000-0002-2226-3931</orcidid><orcidid>https://orcid.org/0000-0002-5556-9099</orcidid></search><sort><creationdate>20171102</creationdate><title>The Chlamydomonas mex1 mutant shows impaired starch mobilization without maltose accumulation</title><author>Findinier, Justin ; Tunçay, Hande ; Schulz-Raffelt, Miriam ; Deschamps, Philippe ; Spriet, Corentin ; Lacroix, Jean-Marie ; Duchêne, Thierry ; Szydlowski, Nicolas ; Li-Beisson, Yonghua ; Peltier, Gilles ; D’Hulst, Christophe ; Wattebled, Fabrice ; Dauvillée, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-c3efa173107fe2d05861cd96ba518fcb7c7f77f4ab25ab989ace754b90a78ca03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algal Proteins - genetics</topic><topic>Algal Proteins - metabolism</topic><topic>Arabidopsis - cytology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Biological Transport</topic><topic>Chlamydomonas reinhardtii - genetics</topic><topic>Chlamydomonas reinhardtii - metabolism</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Gene Expression</topic><topic>Genes, Reporter</topic><topic>Life Sciences</topic><topic>Maltose - metabolism</topic><topic>Monosaccharide Transport Proteins - genetics</topic><topic>Monosaccharide Transport Proteins - metabolism</topic><topic>Mutation</topic><topic>Photosynthesis and Metabolism</topic><topic>Phylogeny</topic><topic>Plastids - metabolism</topic><topic>Recombinant Fusion Proteins</topic><topic>Seedlings - cytology</topic><topic>Seedlings - genetics</topic><topic>Seedlings - metabolism</topic><topic>Starch - metabolism</topic><topic>Transgenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Findinier, Justin</creatorcontrib><creatorcontrib>Tunçay, Hande</creatorcontrib><creatorcontrib>Schulz-Raffelt, Miriam</creatorcontrib><creatorcontrib>Deschamps, Philippe</creatorcontrib><creatorcontrib>Spriet, Corentin</creatorcontrib><creatorcontrib>Lacroix, Jean-Marie</creatorcontrib><creatorcontrib>Duchêne, Thierry</creatorcontrib><creatorcontrib>Szydlowski, Nicolas</creatorcontrib><creatorcontrib>Li-Beisson, Yonghua</creatorcontrib><creatorcontrib>Peltier, Gilles</creatorcontrib><creatorcontrib>D’Hulst, Christophe</creatorcontrib><creatorcontrib>Wattebled, Fabrice</creatorcontrib><creatorcontrib>Dauvillée, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Findinier, Justin</au><au>Tunçay, Hande</au><au>Schulz-Raffelt, Miriam</au><au>Deschamps, Philippe</au><au>Spriet, Corentin</au><au>Lacroix, Jean-Marie</au><au>Duchêne, Thierry</au><au>Szydlowski, Nicolas</au><au>Li-Beisson, Yonghua</au><au>Peltier, Gilles</au><au>D’Hulst, Christophe</au><au>Wattebled, Fabrice</au><au>Dauvillée, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Chlamydomonas mex1 mutant shows impaired starch mobilization without maltose accumulation</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2017-11-02</date><risdate>2017</risdate><volume>68</volume><issue>18</issue><spage>5177</spage><epage>5189</epage><pages>5177-5189</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><abstract>The MEX1 locus of Chlamydomonas reinhardtii was identified in a genetic screen as a factor that affects starch metabolism. Mutation of MEX1 causes a slow-down in the mobilization of storage polysaccharide. Cosegregation and functional complementation analyses were used to assess the involvement of the Mex1 protein in starch degradation. Heterologous expression experiments performed in Escherichia coli and Arabidopsis thaliana allowed us to test the capacity of the algal protein in maltose export. In contrast to the A. thaliana mex1 mutant, the mutation in C. reinhardtii does not lead to maltose accumulation and growth impairment. Although localized in the plastid envelope, the algal protein does not transport maltose efficiently across the envelope, but partly complements the higher plant mutant. Both Mex orthologs restore the growth of the E. coli ptsG mutant strain on glucose-containing medium, revealing the capacity of these proteins to transport this hexose. These findings suggest that Mex1 is essential for starch mobilization in both Chlamydomonas and Arabidopsis, and that this protein family may support several functions and not only be restricted to maltose export across the plastidial envelope.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29040651</pmid><doi>10.1093/jxb/erx343</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3773-9573</orcidid><orcidid>https://orcid.org/0000-0003-1064-1816</orcidid><orcidid>https://orcid.org/0000-0003-0041-8557</orcidid><orcidid>https://orcid.org/0000-0002-1427-8172</orcidid><orcidid>https://orcid.org/0000-0002-0751-9193</orcidid><orcidid>https://orcid.org/0000-0003-4291-8074</orcidid><orcidid>https://orcid.org/0000-0002-5805-3426</orcidid><orcidid>https://orcid.org/0000-0002-2226-3931</orcidid><orcidid>https://orcid.org/0000-0002-5556-9099</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0957
ispartof Journal of experimental botany, 2017-11, Vol.68 (18), p.5177-5189
issn 0022-0957
1460-2431
language eng
recordid cdi_hal_primary_oai_HAL_cea_02023216v1
source JSTOR Archival Journals and Primary Sources Collection; Oxford Journals Online
subjects Algal Proteins - genetics
Algal Proteins - metabolism
Arabidopsis - cytology
Arabidopsis - genetics
Arabidopsis - metabolism
Biological Transport
Chlamydomonas reinhardtii - genetics
Chlamydomonas reinhardtii - metabolism
Escherichia coli - genetics
Escherichia coli - metabolism
Gene Expression
Genes, Reporter
Life Sciences
Maltose - metabolism
Monosaccharide Transport Proteins - genetics
Monosaccharide Transport Proteins - metabolism
Mutation
Photosynthesis and Metabolism
Phylogeny
Plastids - metabolism
Recombinant Fusion Proteins
Seedlings - cytology
Seedlings - genetics
Seedlings - metabolism
Starch - metabolism
Transgenes
title The Chlamydomonas mex1 mutant shows impaired starch mobilization without maltose accumulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T17%3A57%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Chlamydomonas%20mex1%20mutant%20shows%20impaired%20starch%20mobilization%20without%20maltose%20accumulation&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Findinier,%20Justin&rft.date=2017-11-02&rft.volume=68&rft.issue=18&rft.spage=5177&rft.epage=5189&rft.pages=5177-5189&rft.issn=0022-0957&rft.eissn=1460-2431&rft_id=info:doi/10.1093/jxb/erx343&rft_dat=%3Cjstor_hal_p%3E26501600%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-c3efa173107fe2d05861cd96ba518fcb7c7f77f4ab25ab989ace754b90a78ca03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1952525840&rft_id=info:pmid/29040651&rft_jstor_id=26501600&rfr_iscdi=true