Loading…
A New Calculation Strategy for Molten Salt Reactor Neutronic-Thermal-Hydraulic Analysis Implemented with APOLLO3® and TRUST/TrioCFD
Molten salt nuclear reactors (MSRs) constitute a promising technology to produce safe, reliable, abundant low-carbon energy. To design MSR systems and perform safety analyses on them, numerical simulation is a powerful tool. Here, we implemented a coupling between several solvers of the deterministi...
Saved in:
Published in: | Nuclear science and engineering 2023-12, Vol.197 (12), p.3000-3021 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Molten salt nuclear reactors (MSRs) constitute a promising technology to produce safe, reliable, abundant low-carbon energy. To design MSR systems and perform safety analyses on them, numerical simulation is a powerful tool. Here, we implemented a coupling between several solvers of the deterministic neutronics code APOLLO3® (the MINARET S
N
transport and the MINOS diffusion and SP
n
-simplified transport solvers) and the computational fluid dynamics (CFD) code TRUST/TrioCFD, both developed at the French Alternative Energies and Atomic Energy Commission (CEA). The code coupling is orchestrated using the dedicated C3PO library of the open-source SALOME platform. A new code-coupling strategy is employed whereby the delayed neutron precursor concentrations are computed by the CFD code, which eases the use of traditional deterministic neutronics codes. We verified the correctness of our implementation by performing a numerical benchmark dedicated to fast spectrum MSRs originally devised by the French National Center for Scientific Research. The numerical results we obtained are in excellent agreement with those obtained by recent MSR-dedicated multiphysics simulation tools. This study provides a new convenient neutronic-thermal-hydraulic coupling strategy for MSR core simulation. |
---|---|
ISSN: | 0029-5639 1943-748X |
DOI: | 10.1080/00295639.2023.2197043 |