Loading…
Microstructure, adsorption site energetics, and formation enthalpy control for FAU-Zeolite Cs+ exchange
Cs-137 is a radionuclide fission product that poses a significant risk to life, making it crucial to develop effective methods for its separation and sequestration from nuclear waste streams. Zeolitic structures have emerged as promising materials. This work examines the influence of structure, exch...
Saved in:
Published in: | Microporous and mesoporous materials 2024-06, Vol.373, p.113110, Article 113110 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c264t-25a1c7dbe30a59701cee06c0ca5fee682fec49febea88fd4c095aa5db08bdf903 |
---|---|
cites | cdi_FETCH-LOGICAL-c264t-25a1c7dbe30a59701cee06c0ca5fee682fec49febea88fd4c095aa5db08bdf903 |
container_end_page | |
container_issue | |
container_start_page | 113110 |
container_title | Microporous and mesoporous materials |
container_volume | 373 |
creator | Birkner, Nancy Proust, Vanessa Schaeperkoetter, Joe Ta, An T. Gossard, Alban Daouli, Ayoub Badawi, Michael Cassell, Nakeshma Misture, Scott Phillpot, Simon R. zur Loye, Hans-Conrad Brinkman, Kyle S. Grandjean, Agnès |
description | Cs-137 is a radionuclide fission product that poses a significant risk to life, making it crucial to develop effective methods for its separation and sequestration from nuclear waste streams. Zeolitic structures have emerged as promising materials. This work examines the influence of structure, exchange site energetics, and formation enthalpies of nascent and cation-exchanged Faujasite-X, -Y, and -HY zeolites in terms of their Cs-exchange selectivity. Their interplay was quantified with the application of high-temperature calorimetry, adsorption isotherms, X-ray diffraction and density functional theory (DFT) calculations. Greater efficacy of Cs+ exchange was demonstrated for the Na+-substituted Fau-Y (NaY) zeolite than that of the Fau-X (NaX) and Fau-HY (Na-HY) zeolites. This is explained by a higher amount of Na+ in un-exchangeable sites in the case of NaX and a lower stability in NaY that favors the ionic exchange with Cs+. Moreover, Cs+ incorporation in the structure increases the stability of each kind of zeolite. Correspondingly, structure and DFT analyses demonstrated site-exchange thermodynamic favorability as well as the contribution from cage cell, which resulted in an energy landscape far more conducive to Cs+ incorporation for NaY than either NaX or Na-HY.
[Display omitted]
•Powerful drivers for designing and understanding Cs + Faujasite-based materials.•Computational techniques for a comprehensive zeolitic cation substitution strategy.•Crucial contributing factors correlating stability and Cs-adsorption efficiency.•New insights gaining the importance of considering thermodynamics. |
doi_str_mv | 10.1016/j.micromeso.2024.113110 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_cea_04711803v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S138718112400132X</els_id><sourcerecordid>oai_HAL_cea_04711803v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-25a1c7dbe30a59701cee06c0ca5fee682fec49febea88fd4c095aa5db08bdf903</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmPwG-gVQYvd7x6niTGkIS7swiVKU3fL1DZTkk3s39NStCsnW3r9WPbD2D1CgIDp8y5olTS6JauDEMI4QIwQ4YJNMM8iP4Iiuuz7KM98zBGv2Y21OwDMMMQJ27wPsHXmIN3B0JMnKqvN3indeVY58qgjsyGnpO2zrvJqbVrxG1PntqLZnzypO2d0M0TeYrb2v0g3Azq3jx59y63oNnTLrmrRWLr7q1O2Xrx8zpf-6uP1bT5b-TJMY-eHiUCZVSVFIJIiA5REkEqQIqmJ0jysScZFTSWJPK-rWEKRCJFUJeRlVRcQTdnDuLc_je-NaoU5cS0UX85WXJLgEGeIOURH7GezcXYwYA3VZwCBD275jp_d8sEtH9325GwkqX_lqMhwKxV1kiplSDpeafXvjh8zt4lC</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Microstructure, adsorption site energetics, and formation enthalpy control for FAU-Zeolite Cs+ exchange</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Birkner, Nancy ; Proust, Vanessa ; Schaeperkoetter, Joe ; Ta, An T. ; Gossard, Alban ; Daouli, Ayoub ; Badawi, Michael ; Cassell, Nakeshma ; Misture, Scott ; Phillpot, Simon R. ; zur Loye, Hans-Conrad ; Brinkman, Kyle S. ; Grandjean, Agnès</creator><creatorcontrib>Birkner, Nancy ; Proust, Vanessa ; Schaeperkoetter, Joe ; Ta, An T. ; Gossard, Alban ; Daouli, Ayoub ; Badawi, Michael ; Cassell, Nakeshma ; Misture, Scott ; Phillpot, Simon R. ; zur Loye, Hans-Conrad ; Brinkman, Kyle S. ; Grandjean, Agnès</creatorcontrib><description>Cs-137 is a radionuclide fission product that poses a significant risk to life, making it crucial to develop effective methods for its separation and sequestration from nuclear waste streams. Zeolitic structures have emerged as promising materials. This work examines the influence of structure, exchange site energetics, and formation enthalpies of nascent and cation-exchanged Faujasite-X, -Y, and -HY zeolites in terms of their Cs-exchange selectivity. Their interplay was quantified with the application of high-temperature calorimetry, adsorption isotherms, X-ray diffraction and density functional theory (DFT) calculations. Greater efficacy of Cs+ exchange was demonstrated for the Na+-substituted Fau-Y (NaY) zeolite than that of the Fau-X (NaX) and Fau-HY (Na-HY) zeolites. This is explained by a higher amount of Na+ in un-exchangeable sites in the case of NaX and a lower stability in NaY that favors the ionic exchange with Cs+. Moreover, Cs+ incorporation in the structure increases the stability of each kind of zeolite. Correspondingly, structure and DFT analyses demonstrated site-exchange thermodynamic favorability as well as the contribution from cage cell, which resulted in an energy landscape far more conducive to Cs+ incorporation for NaY than either NaX or Na-HY.
[Display omitted]
•Powerful drivers for designing and understanding Cs + Faujasite-based materials.•Computational techniques for a comprehensive zeolitic cation substitution strategy.•Crucial contributing factors correlating stability and Cs-adsorption efficiency.•New insights gaining the importance of considering thermodynamics.</description><identifier>ISSN: 1387-1811</identifier><identifier>EISSN: 1873-3093</identifier><identifier>DOI: 10.1016/j.micromeso.2024.113110</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Calorimetry ; Chemical Sciences ; Cs site-exchange ; DFT ; Faujasite ; Thermodynamics ; Zeolite microstructure</subject><ispartof>Microporous and mesoporous materials, 2024-06, Vol.373, p.113110, Article 113110</ispartof><rights>2024 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-25a1c7dbe30a59701cee06c0ca5fee682fec49febea88fd4c095aa5db08bdf903</citedby><cites>FETCH-LOGICAL-c264t-25a1c7dbe30a59701cee06c0ca5fee682fec49febea88fd4c095aa5db08bdf903</cites><orcidid>0000-0002-8794-5466 ; 0000-0002-7774-6535 ; 0000-0002-3815-2144 ; 0000-0001-8347-4380 ; 0000-0002-7803-6017 ; 0000-0001-7351-9098 ; 0000-0002-8558-7167 ; 0000-0002-3504-4180</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-04711803$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Birkner, Nancy</creatorcontrib><creatorcontrib>Proust, Vanessa</creatorcontrib><creatorcontrib>Schaeperkoetter, Joe</creatorcontrib><creatorcontrib>Ta, An T.</creatorcontrib><creatorcontrib>Gossard, Alban</creatorcontrib><creatorcontrib>Daouli, Ayoub</creatorcontrib><creatorcontrib>Badawi, Michael</creatorcontrib><creatorcontrib>Cassell, Nakeshma</creatorcontrib><creatorcontrib>Misture, Scott</creatorcontrib><creatorcontrib>Phillpot, Simon R.</creatorcontrib><creatorcontrib>zur Loye, Hans-Conrad</creatorcontrib><creatorcontrib>Brinkman, Kyle S.</creatorcontrib><creatorcontrib>Grandjean, Agnès</creatorcontrib><title>Microstructure, adsorption site energetics, and formation enthalpy control for FAU-Zeolite Cs+ exchange</title><title>Microporous and mesoporous materials</title><description>Cs-137 is a radionuclide fission product that poses a significant risk to life, making it crucial to develop effective methods for its separation and sequestration from nuclear waste streams. Zeolitic structures have emerged as promising materials. This work examines the influence of structure, exchange site energetics, and formation enthalpies of nascent and cation-exchanged Faujasite-X, -Y, and -HY zeolites in terms of their Cs-exchange selectivity. Their interplay was quantified with the application of high-temperature calorimetry, adsorption isotherms, X-ray diffraction and density functional theory (DFT) calculations. Greater efficacy of Cs+ exchange was demonstrated for the Na+-substituted Fau-Y (NaY) zeolite than that of the Fau-X (NaX) and Fau-HY (Na-HY) zeolites. This is explained by a higher amount of Na+ in un-exchangeable sites in the case of NaX and a lower stability in NaY that favors the ionic exchange with Cs+. Moreover, Cs+ incorporation in the structure increases the stability of each kind of zeolite. Correspondingly, structure and DFT analyses demonstrated site-exchange thermodynamic favorability as well as the contribution from cage cell, which resulted in an energy landscape far more conducive to Cs+ incorporation for NaY than either NaX or Na-HY.
[Display omitted]
•Powerful drivers for designing and understanding Cs + Faujasite-based materials.•Computational techniques for a comprehensive zeolitic cation substitution strategy.•Crucial contributing factors correlating stability and Cs-adsorption efficiency.•New insights gaining the importance of considering thermodynamics.</description><subject>Calorimetry</subject><subject>Chemical Sciences</subject><subject>Cs site-exchange</subject><subject>DFT</subject><subject>Faujasite</subject><subject>Thermodynamics</subject><subject>Zeolite microstructure</subject><issn>1387-1811</issn><issn>1873-3093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEmPwG-gVQYvd7x6niTGkIS7swiVKU3fL1DZTkk3s39NStCsnW3r9WPbD2D1CgIDp8y5olTS6JauDEMI4QIwQ4YJNMM8iP4Iiuuz7KM98zBGv2Y21OwDMMMQJ27wPsHXmIN3B0JMnKqvN3indeVY58qgjsyGnpO2zrvJqbVrxG1PntqLZnzypO2d0M0TeYrb2v0g3Azq3jx59y63oNnTLrmrRWLr7q1O2Xrx8zpf-6uP1bT5b-TJMY-eHiUCZVSVFIJIiA5REkEqQIqmJ0jysScZFTSWJPK-rWEKRCJFUJeRlVRcQTdnDuLc_je-NaoU5cS0UX85WXJLgEGeIOURH7GezcXYwYA3VZwCBD275jp_d8sEtH9325GwkqX_lqMhwKxV1kiplSDpeafXvjh8zt4lC</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Birkner, Nancy</creator><creator>Proust, Vanessa</creator><creator>Schaeperkoetter, Joe</creator><creator>Ta, An T.</creator><creator>Gossard, Alban</creator><creator>Daouli, Ayoub</creator><creator>Badawi, Michael</creator><creator>Cassell, Nakeshma</creator><creator>Misture, Scott</creator><creator>Phillpot, Simon R.</creator><creator>zur Loye, Hans-Conrad</creator><creator>Brinkman, Kyle S.</creator><creator>Grandjean, Agnès</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-8794-5466</orcidid><orcidid>https://orcid.org/0000-0002-7774-6535</orcidid><orcidid>https://orcid.org/0000-0002-3815-2144</orcidid><orcidid>https://orcid.org/0000-0001-8347-4380</orcidid><orcidid>https://orcid.org/0000-0002-7803-6017</orcidid><orcidid>https://orcid.org/0000-0001-7351-9098</orcidid><orcidid>https://orcid.org/0000-0002-8558-7167</orcidid><orcidid>https://orcid.org/0000-0002-3504-4180</orcidid></search><sort><creationdate>20240601</creationdate><title>Microstructure, adsorption site energetics, and formation enthalpy control for FAU-Zeolite Cs+ exchange</title><author>Birkner, Nancy ; Proust, Vanessa ; Schaeperkoetter, Joe ; Ta, An T. ; Gossard, Alban ; Daouli, Ayoub ; Badawi, Michael ; Cassell, Nakeshma ; Misture, Scott ; Phillpot, Simon R. ; zur Loye, Hans-Conrad ; Brinkman, Kyle S. ; Grandjean, Agnès</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-25a1c7dbe30a59701cee06c0ca5fee682fec49febea88fd4c095aa5db08bdf903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Calorimetry</topic><topic>Chemical Sciences</topic><topic>Cs site-exchange</topic><topic>DFT</topic><topic>Faujasite</topic><topic>Thermodynamics</topic><topic>Zeolite microstructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Birkner, Nancy</creatorcontrib><creatorcontrib>Proust, Vanessa</creatorcontrib><creatorcontrib>Schaeperkoetter, Joe</creatorcontrib><creatorcontrib>Ta, An T.</creatorcontrib><creatorcontrib>Gossard, Alban</creatorcontrib><creatorcontrib>Daouli, Ayoub</creatorcontrib><creatorcontrib>Badawi, Michael</creatorcontrib><creatorcontrib>Cassell, Nakeshma</creatorcontrib><creatorcontrib>Misture, Scott</creatorcontrib><creatorcontrib>Phillpot, Simon R.</creatorcontrib><creatorcontrib>zur Loye, Hans-Conrad</creatorcontrib><creatorcontrib>Brinkman, Kyle S.</creatorcontrib><creatorcontrib>Grandjean, Agnès</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Microporous and mesoporous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Birkner, Nancy</au><au>Proust, Vanessa</au><au>Schaeperkoetter, Joe</au><au>Ta, An T.</au><au>Gossard, Alban</au><au>Daouli, Ayoub</au><au>Badawi, Michael</au><au>Cassell, Nakeshma</au><au>Misture, Scott</au><au>Phillpot, Simon R.</au><au>zur Loye, Hans-Conrad</au><au>Brinkman, Kyle S.</au><au>Grandjean, Agnès</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microstructure, adsorption site energetics, and formation enthalpy control for FAU-Zeolite Cs+ exchange</atitle><jtitle>Microporous and mesoporous materials</jtitle><date>2024-06-01</date><risdate>2024</risdate><volume>373</volume><spage>113110</spage><pages>113110-</pages><artnum>113110</artnum><issn>1387-1811</issn><eissn>1873-3093</eissn><abstract>Cs-137 is a radionuclide fission product that poses a significant risk to life, making it crucial to develop effective methods for its separation and sequestration from nuclear waste streams. Zeolitic structures have emerged as promising materials. This work examines the influence of structure, exchange site energetics, and formation enthalpies of nascent and cation-exchanged Faujasite-X, -Y, and -HY zeolites in terms of their Cs-exchange selectivity. Their interplay was quantified with the application of high-temperature calorimetry, adsorption isotherms, X-ray diffraction and density functional theory (DFT) calculations. Greater efficacy of Cs+ exchange was demonstrated for the Na+-substituted Fau-Y (NaY) zeolite than that of the Fau-X (NaX) and Fau-HY (Na-HY) zeolites. This is explained by a higher amount of Na+ in un-exchangeable sites in the case of NaX and a lower stability in NaY that favors the ionic exchange with Cs+. Moreover, Cs+ incorporation in the structure increases the stability of each kind of zeolite. Correspondingly, structure and DFT analyses demonstrated site-exchange thermodynamic favorability as well as the contribution from cage cell, which resulted in an energy landscape far more conducive to Cs+ incorporation for NaY than either NaX or Na-HY.
[Display omitted]
•Powerful drivers for designing and understanding Cs + Faujasite-based materials.•Computational techniques for a comprehensive zeolitic cation substitution strategy.•Crucial contributing factors correlating stability and Cs-adsorption efficiency.•New insights gaining the importance of considering thermodynamics.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.micromeso.2024.113110</doi><orcidid>https://orcid.org/0000-0002-8794-5466</orcidid><orcidid>https://orcid.org/0000-0002-7774-6535</orcidid><orcidid>https://orcid.org/0000-0002-3815-2144</orcidid><orcidid>https://orcid.org/0000-0001-8347-4380</orcidid><orcidid>https://orcid.org/0000-0002-7803-6017</orcidid><orcidid>https://orcid.org/0000-0001-7351-9098</orcidid><orcidid>https://orcid.org/0000-0002-8558-7167</orcidid><orcidid>https://orcid.org/0000-0002-3504-4180</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-1811 |
ispartof | Microporous and mesoporous materials, 2024-06, Vol.373, p.113110, Article 113110 |
issn | 1387-1811 1873-3093 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_cea_04711803v1 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Calorimetry Chemical Sciences Cs site-exchange DFT Faujasite Thermodynamics Zeolite microstructure |
title | Microstructure, adsorption site energetics, and formation enthalpy control for FAU-Zeolite Cs+ exchange |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A03%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microstructure,%20adsorption%20site%20energetics,%20and%20formation%20enthalpy%20control%20for%20FAU-Zeolite%20Cs+%20exchange&rft.jtitle=Microporous%20and%20mesoporous%20materials&rft.au=Birkner,%20Nancy&rft.date=2024-06-01&rft.volume=373&rft.spage=113110&rft.pages=113110-&rft.artnum=113110&rft.issn=1387-1811&rft.eissn=1873-3093&rft_id=info:doi/10.1016/j.micromeso.2024.113110&rft_dat=%3Chal_cross%3Eoai_HAL_cea_04711803v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c264t-25a1c7dbe30a59701cee06c0ca5fee682fec49febea88fd4c095aa5db08bdf903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |