Loading…
Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density
We report tensile failure experiments on polyurethane (PU) foams. Experiments have been performed by imposing a constant strain rate. We work on heterogeneous materials for whom the failure does not occur suddenly and can develop as a multistep process through a succession of microcracks that end at...
Saved in:
Published in: | International journal of fracture 2006-07, Vol.140 (1-4), p.87-98 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c435t-515ed3fa1ccc6a37cf615d61a20b29c0d0668715b3d083ef4a6dfcd76bc67eb13 |
---|---|
cites | cdi_FETCH-LOGICAL-c435t-515ed3fa1ccc6a37cf615d61a20b29c0d0668715b3d083ef4a6dfcd76bc67eb13 |
container_end_page | 98 |
container_issue | 1-4 |
container_start_page | 87 |
container_title | International journal of fracture |
container_volume | 140 |
creator | DESCHANEL, S VANEL, L VIGIER, G GODIN, N CILIBERTO, S |
description | We report tensile failure experiments on polyurethane (PU) foams. Experiments have been performed by imposing a constant strain rate. We work on heterogeneous materials for whom the failure does not occur suddenly and can develop as a multistep process through a succession of microcracks that end at pores. The acoustic energy and the waiting times between acoustic events follow power-law distributions. This remains true while the foam density is varied. However, experiments at low temperatures (PU foams more brittle) have not yielded power-laws for the waiting times. The cumulative acoustic energy has no power-law divergence at the proximity of the failure point which is qualitatively in agreement with other experiments done at imposed strain. We notice a plateau in cumulative acoustic energy that seems to occur when a single crack starts to propagate. |
doi_str_mv | 10.1007/s10704-006-0051-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_ensl_00156937v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29071103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-515ed3fa1ccc6a37cf615d61a20b29c0d0668715b3d083ef4a6dfcd76bc67eb13</originalsourceid><addsrcrecordid>eNqFksFrFTEQxoMo-Kz-Ad4CohTp6kyySXaPpagtPOiheg552cSmZnefSbbw_nuzvKLQgz0Mc_nNx3zzDSFvET4hgPqcERS0DYCsJbDBZ2SDQvGGScWfkw1wJZu-Zf1L8irnOwDoVdduyP1NMSXkEqyJdJ_mvUsluExnT8dg02yTsb_C9JOGie7neFiSK7dmctTPZsx0mQaXaHFTDtHVnstZJX1c3GTdKlLcWCVNqXPUTAMdVrQcXpMX3sTs3jz0E_Lj65fvF5fN9vrb1cX5trEtF6URKNzAvUFrrTRcWS9RDBINgx3rLQwgZadQ7PgAHXe-NXLwdlByZ6VyO-Qn5ONR99ZEvU9hNOmgZxP05flW11WiBkAhe67uV_jDEa53-L1UL3oM2boYq995yZr1oBCBV_D0vyAqqHEwzvFpFDqGXctUW9F3j9C7eUlTPY9mTPSd7EDISuGRquHknJz_awtBr6-gj69QjUm9voJel3j_oGxyzdknM9mQ_w12vJVC9fwPaRK0Mw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259868056</pqid></control><display><type>article</type><title>Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density</title><source>Springer Nature</source><creator>DESCHANEL, S ; VANEL, L ; VIGIER, G ; GODIN, N ; CILIBERTO, S</creator><creatorcontrib>DESCHANEL, S ; VANEL, L ; VIGIER, G ; GODIN, N ; CILIBERTO, S</creatorcontrib><description>We report tensile failure experiments on polyurethane (PU) foams. Experiments have been performed by imposing a constant strain rate. We work on heterogeneous materials for whom the failure does not occur suddenly and can develop as a multistep process through a succession of microcracks that end at pores. The acoustic energy and the waiting times between acoustic events follow power-law distributions. This remains true while the foam density is varied. However, experiments at low temperatures (PU foams more brittle) have not yielded power-laws for the waiting times. The cumulative acoustic energy has no power-law divergence at the proximity of the failure point which is qualitatively in agreement with other experiments done at imposed strain. We notice a plateau in cumulative acoustic energy that seems to occur when a single crack starts to propagate.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-006-0051-1</identifier><identifier>CODEN: IJFRAP</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Acoustics ; Condensed Matter ; Crack initiation ; Cross-disciplinary physics: materials science; rheology ; Density ; Divergence ; Exact sciences and technology ; Experiments ; Failure ; Foams ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Materials Science ; Materials testing ; Mechanics ; Mechanics of materials ; Microcracks ; Physics ; Plastic foam ; Plutonium ; Polyurethane foam ; Power law ; Solid mechanics ; Strain rate ; Structural and continuum mechanics ; Tensile tests</subject><ispartof>International journal of fracture, 2006-07, Vol.140 (1-4), p.87-98</ispartof><rights>2007 INIST-CNRS</rights><rights>International Journal of Fracture is a copyright of Springer, (2006). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-515ed3fa1ccc6a37cf615d61a20b29c0d0668715b3d083ef4a6dfcd76bc67eb13</citedby><cites>FETCH-LOGICAL-c435t-515ed3fa1ccc6a37cf615d61a20b29c0d0668715b3d083ef4a6dfcd76bc67eb13</cites><orcidid>0000-0002-1013-8201 ; 0000-0001-9137-729X ; 0000-0003-3813-1594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,776,780,785,786,881,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18346579$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://ens-lyon.hal.science/ensl-00156937$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>DESCHANEL, S</creatorcontrib><creatorcontrib>VANEL, L</creatorcontrib><creatorcontrib>VIGIER, G</creatorcontrib><creatorcontrib>GODIN, N</creatorcontrib><creatorcontrib>CILIBERTO, S</creatorcontrib><title>Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density</title><title>International journal of fracture</title><description>We report tensile failure experiments on polyurethane (PU) foams. Experiments have been performed by imposing a constant strain rate. We work on heterogeneous materials for whom the failure does not occur suddenly and can develop as a multistep process through a succession of microcracks that end at pores. The acoustic energy and the waiting times between acoustic events follow power-law distributions. This remains true while the foam density is varied. However, experiments at low temperatures (PU foams more brittle) have not yielded power-laws for the waiting times. The cumulative acoustic energy has no power-law divergence at the proximity of the failure point which is qualitatively in agreement with other experiments done at imposed strain. We notice a plateau in cumulative acoustic energy that seems to occur when a single crack starts to propagate.</description><subject>Acoustics</subject><subject>Condensed Matter</subject><subject>Crack initiation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Density</subject><subject>Divergence</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Failure</subject><subject>Foams</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Materials Science</subject><subject>Materials testing</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Microcracks</subject><subject>Physics</subject><subject>Plastic foam</subject><subject>Plutonium</subject><subject>Polyurethane foam</subject><subject>Power law</subject><subject>Solid mechanics</subject><subject>Strain rate</subject><subject>Structural and continuum mechanics</subject><subject>Tensile tests</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFksFrFTEQxoMo-Kz-Ad4CohTp6kyySXaPpagtPOiheg552cSmZnefSbbw_nuzvKLQgz0Mc_nNx3zzDSFvET4hgPqcERS0DYCsJbDBZ2SDQvGGScWfkw1wJZu-Zf1L8irnOwDoVdduyP1NMSXkEqyJdJ_mvUsluExnT8dg02yTsb_C9JOGie7neFiSK7dmctTPZsx0mQaXaHFTDtHVnstZJX1c3GTdKlLcWCVNqXPUTAMdVrQcXpMX3sTs3jz0E_Lj65fvF5fN9vrb1cX5trEtF6URKNzAvUFrrTRcWS9RDBINgx3rLQwgZadQ7PgAHXe-NXLwdlByZ6VyO-Qn5ONR99ZEvU9hNOmgZxP05flW11WiBkAhe67uV_jDEa53-L1UL3oM2boYq995yZr1oBCBV_D0vyAqqHEwzvFpFDqGXctUW9F3j9C7eUlTPY9mTPSd7EDISuGRquHknJz_awtBr6-gj69QjUm9voJel3j_oGxyzdknM9mQ_w12vJVC9fwPaRK0Mw</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>DESCHANEL, S</creator><creator>VANEL, L</creator><creator>VIGIER, G</creator><creator>GODIN, N</creator><creator>CILIBERTO, S</creator><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1013-8201</orcidid><orcidid>https://orcid.org/0000-0001-9137-729X</orcidid><orcidid>https://orcid.org/0000-0003-3813-1594</orcidid></search><sort><creationdate>20060701</creationdate><title>Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density</title><author>DESCHANEL, S ; VANEL, L ; VIGIER, G ; GODIN, N ; CILIBERTO, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-515ed3fa1ccc6a37cf615d61a20b29c0d0668715b3d083ef4a6dfcd76bc67eb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acoustics</topic><topic>Condensed Matter</topic><topic>Crack initiation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Density</topic><topic>Divergence</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Failure</topic><topic>Foams</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Materials Science</topic><topic>Materials testing</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Microcracks</topic><topic>Physics</topic><topic>Plastic foam</topic><topic>Plutonium</topic><topic>Polyurethane foam</topic><topic>Power law</topic><topic>Solid mechanics</topic><topic>Strain rate</topic><topic>Structural and continuum mechanics</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DESCHANEL, S</creatorcontrib><creatorcontrib>VANEL, L</creatorcontrib><creatorcontrib>VIGIER, G</creatorcontrib><creatorcontrib>GODIN, N</creatorcontrib><creatorcontrib>CILIBERTO, S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DESCHANEL, S</au><au>VANEL, L</au><au>VIGIER, G</au><au>GODIN, N</au><au>CILIBERTO, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density</atitle><jtitle>International journal of fracture</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>140</volume><issue>1-4</issue><spage>87</spage><epage>98</epage><pages>87-98</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><coden>IJFRAP</coden><abstract>We report tensile failure experiments on polyurethane (PU) foams. Experiments have been performed by imposing a constant strain rate. We work on heterogeneous materials for whom the failure does not occur suddenly and can develop as a multistep process through a succession of microcracks that end at pores. The acoustic energy and the waiting times between acoustic events follow power-law distributions. This remains true while the foam density is varied. However, experiments at low temperatures (PU foams more brittle) have not yielded power-laws for the waiting times. The cumulative acoustic energy has no power-law divergence at the proximity of the failure point which is qualitatively in agreement with other experiments done at imposed strain. We notice a plateau in cumulative acoustic energy that seems to occur when a single crack starts to propagate.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10704-006-0051-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1013-8201</orcidid><orcidid>https://orcid.org/0000-0001-9137-729X</orcidid><orcidid>https://orcid.org/0000-0003-3813-1594</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0376-9429 |
ispartof | International journal of fracture, 2006-07, Vol.140 (1-4), p.87-98 |
issn | 0376-9429 1573-2673 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_ensl_00156937v1 |
source | Springer Nature |
subjects | Acoustics Condensed Matter Crack initiation Cross-disciplinary physics: materials science rheology Density Divergence Exact sciences and technology Experiments Failure Foams Fracture mechanics Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Materials Science Materials testing Mechanics Mechanics of materials Microcracks Physics Plastic foam Plutonium Polyurethane foam Power law Solid mechanics Strain rate Structural and continuum mechanics Tensile tests |
title | Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20properties%20of%20microcracking%20in%20polyurethane%20foams%20under%20tensile%20test,%20influence%20of%20temperature%20and%20density&rft.jtitle=International%20journal%20of%20fracture&rft.au=DESCHANEL,%20S&rft.date=2006-07-01&rft.volume=140&rft.issue=1-4&rft.spage=87&rft.epage=98&rft.pages=87-98&rft.issn=0376-9429&rft.eissn=1573-2673&rft.coden=IJFRAP&rft_id=info:doi/10.1007/s10704-006-0051-1&rft_dat=%3Cproquest_hal_p%3E29071103%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-515ed3fa1ccc6a37cf615d61a20b29c0d0668715b3d083ef4a6dfcd76bc67eb13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259868056&rft_id=info:pmid/&rfr_iscdi=true |