Loading…

Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density

We report tensile failure experiments on polyurethane (PU) foams. Experiments have been performed by imposing a constant strain rate. We work on heterogeneous materials for whom the failure does not occur suddenly and can develop as a multistep process through a succession of microcracks that end at...

Full description

Saved in:
Bibliographic Details
Published in:International journal of fracture 2006-07, Vol.140 (1-4), p.87-98
Main Authors: DESCHANEL, S, VANEL, L, VIGIER, G, GODIN, N, CILIBERTO, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c435t-515ed3fa1ccc6a37cf615d61a20b29c0d0668715b3d083ef4a6dfcd76bc67eb13
cites cdi_FETCH-LOGICAL-c435t-515ed3fa1ccc6a37cf615d61a20b29c0d0668715b3d083ef4a6dfcd76bc67eb13
container_end_page 98
container_issue 1-4
container_start_page 87
container_title International journal of fracture
container_volume 140
creator DESCHANEL, S
VANEL, L
VIGIER, G
GODIN, N
CILIBERTO, S
description We report tensile failure experiments on polyurethane (PU) foams. Experiments have been performed by imposing a constant strain rate. We work on heterogeneous materials for whom the failure does not occur suddenly and can develop as a multistep process through a succession of microcracks that end at pores. The acoustic energy and the waiting times between acoustic events follow power-law distributions. This remains true while the foam density is varied. However, experiments at low temperatures (PU foams more brittle) have not yielded power-laws for the waiting times. The cumulative acoustic energy has no power-law divergence at the proximity of the failure point which is qualitatively in agreement with other experiments done at imposed strain. We notice a plateau in cumulative acoustic energy that seems to occur when a single crack starts to propagate.
doi_str_mv 10.1007/s10704-006-0051-1
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_ensl_00156937v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>29071103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-515ed3fa1ccc6a37cf615d61a20b29c0d0668715b3d083ef4a6dfcd76bc67eb13</originalsourceid><addsrcrecordid>eNqFksFrFTEQxoMo-Kz-Ad4CohTp6kyySXaPpagtPOiheg552cSmZnefSbbw_nuzvKLQgz0Mc_nNx3zzDSFvET4hgPqcERS0DYCsJbDBZ2SDQvGGScWfkw1wJZu-Zf1L8irnOwDoVdduyP1NMSXkEqyJdJ_mvUsluExnT8dg02yTsb_C9JOGie7neFiSK7dmctTPZsx0mQaXaHFTDtHVnstZJX1c3GTdKlLcWCVNqXPUTAMdVrQcXpMX3sTs3jz0E_Lj65fvF5fN9vrb1cX5trEtF6URKNzAvUFrrTRcWS9RDBINgx3rLQwgZadQ7PgAHXe-NXLwdlByZ6VyO-Qn5ONR99ZEvU9hNOmgZxP05flW11WiBkAhe67uV_jDEa53-L1UL3oM2boYq995yZr1oBCBV_D0vyAqqHEwzvFpFDqGXctUW9F3j9C7eUlTPY9mTPSd7EDISuGRquHknJz_awtBr6-gj69QjUm9voJel3j_oGxyzdknM9mQ_w12vJVC9fwPaRK0Mw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259868056</pqid></control><display><type>article</type><title>Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density</title><source>Springer Nature</source><creator>DESCHANEL, S ; VANEL, L ; VIGIER, G ; GODIN, N ; CILIBERTO, S</creator><creatorcontrib>DESCHANEL, S ; VANEL, L ; VIGIER, G ; GODIN, N ; CILIBERTO, S</creatorcontrib><description>We report tensile failure experiments on polyurethane (PU) foams. Experiments have been performed by imposing a constant strain rate. We work on heterogeneous materials for whom the failure does not occur suddenly and can develop as a multistep process through a succession of microcracks that end at pores. The acoustic energy and the waiting times between acoustic events follow power-law distributions. This remains true while the foam density is varied. However, experiments at low temperatures (PU foams more brittle) have not yielded power-laws for the waiting times. The cumulative acoustic energy has no power-law divergence at the proximity of the failure point which is qualitatively in agreement with other experiments done at imposed strain. We notice a plateau in cumulative acoustic energy that seems to occur when a single crack starts to propagate.</description><identifier>ISSN: 0376-9429</identifier><identifier>EISSN: 1573-2673</identifier><identifier>DOI: 10.1007/s10704-006-0051-1</identifier><identifier>CODEN: IJFRAP</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Acoustics ; Condensed Matter ; Crack initiation ; Cross-disciplinary physics: materials science; rheology ; Density ; Divergence ; Exact sciences and technology ; Experiments ; Failure ; Foams ; Fracture mechanics ; Fracture mechanics (crack, fatigue, damage...) ; Fundamental areas of phenomenology (including applications) ; Materials Science ; Materials testing ; Mechanics ; Mechanics of materials ; Microcracks ; Physics ; Plastic foam ; Plutonium ; Polyurethane foam ; Power law ; Solid mechanics ; Strain rate ; Structural and continuum mechanics ; Tensile tests</subject><ispartof>International journal of fracture, 2006-07, Vol.140 (1-4), p.87-98</ispartof><rights>2007 INIST-CNRS</rights><rights>International Journal of Fracture is a copyright of Springer, (2006). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-515ed3fa1ccc6a37cf615d61a20b29c0d0668715b3d083ef4a6dfcd76bc67eb13</citedby><cites>FETCH-LOGICAL-c435t-515ed3fa1ccc6a37cf615d61a20b29c0d0668715b3d083ef4a6dfcd76bc67eb13</cites><orcidid>0000-0002-1013-8201 ; 0000-0001-9137-729X ; 0000-0003-3813-1594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,776,780,785,786,881,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=18346579$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://ens-lyon.hal.science/ensl-00156937$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>DESCHANEL, S</creatorcontrib><creatorcontrib>VANEL, L</creatorcontrib><creatorcontrib>VIGIER, G</creatorcontrib><creatorcontrib>GODIN, N</creatorcontrib><creatorcontrib>CILIBERTO, S</creatorcontrib><title>Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density</title><title>International journal of fracture</title><description>We report tensile failure experiments on polyurethane (PU) foams. Experiments have been performed by imposing a constant strain rate. We work on heterogeneous materials for whom the failure does not occur suddenly and can develop as a multistep process through a succession of microcracks that end at pores. The acoustic energy and the waiting times between acoustic events follow power-law distributions. This remains true while the foam density is varied. However, experiments at low temperatures (PU foams more brittle) have not yielded power-laws for the waiting times. The cumulative acoustic energy has no power-law divergence at the proximity of the failure point which is qualitatively in agreement with other experiments done at imposed strain. We notice a plateau in cumulative acoustic energy that seems to occur when a single crack starts to propagate.</description><subject>Acoustics</subject><subject>Condensed Matter</subject><subject>Crack initiation</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Density</subject><subject>Divergence</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Failure</subject><subject>Foams</subject><subject>Fracture mechanics</subject><subject>Fracture mechanics (crack, fatigue, damage...)</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Materials Science</subject><subject>Materials testing</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Microcracks</subject><subject>Physics</subject><subject>Plastic foam</subject><subject>Plutonium</subject><subject>Polyurethane foam</subject><subject>Power law</subject><subject>Solid mechanics</subject><subject>Strain rate</subject><subject>Structural and continuum mechanics</subject><subject>Tensile tests</subject><issn>0376-9429</issn><issn>1573-2673</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFksFrFTEQxoMo-Kz-Ad4CohTp6kyySXaPpagtPOiheg552cSmZnefSbbw_nuzvKLQgz0Mc_nNx3zzDSFvET4hgPqcERS0DYCsJbDBZ2SDQvGGScWfkw1wJZu-Zf1L8irnOwDoVdduyP1NMSXkEqyJdJ_mvUsluExnT8dg02yTsb_C9JOGie7neFiSK7dmctTPZsx0mQaXaHFTDtHVnstZJX1c3GTdKlLcWCVNqXPUTAMdVrQcXpMX3sTs3jz0E_Lj65fvF5fN9vrb1cX5trEtF6URKNzAvUFrrTRcWS9RDBINgx3rLQwgZadQ7PgAHXe-NXLwdlByZ6VyO-Qn5ONR99ZEvU9hNOmgZxP05flW11WiBkAhe67uV_jDEa53-L1UL3oM2boYq995yZr1oBCBV_D0vyAqqHEwzvFpFDqGXctUW9F3j9C7eUlTPY9mTPSd7EDISuGRquHknJz_awtBr6-gj69QjUm9voJel3j_oGxyzdknM9mQ_w12vJVC9fwPaRK0Mw</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>DESCHANEL, S</creator><creator>VANEL, L</creator><creator>VIGIER, G</creator><creator>GODIN, N</creator><creator>CILIBERTO, S</creator><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-1013-8201</orcidid><orcidid>https://orcid.org/0000-0001-9137-729X</orcidid><orcidid>https://orcid.org/0000-0003-3813-1594</orcidid></search><sort><creationdate>20060701</creationdate><title>Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density</title><author>DESCHANEL, S ; VANEL, L ; VIGIER, G ; GODIN, N ; CILIBERTO, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-515ed3fa1ccc6a37cf615d61a20b29c0d0668715b3d083ef4a6dfcd76bc67eb13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Acoustics</topic><topic>Condensed Matter</topic><topic>Crack initiation</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Density</topic><topic>Divergence</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Failure</topic><topic>Foams</topic><topic>Fracture mechanics</topic><topic>Fracture mechanics (crack, fatigue, damage...)</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Materials Science</topic><topic>Materials testing</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Microcracks</topic><topic>Physics</topic><topic>Plastic foam</topic><topic>Plutonium</topic><topic>Polyurethane foam</topic><topic>Power law</topic><topic>Solid mechanics</topic><topic>Strain rate</topic><topic>Structural and continuum mechanics</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DESCHANEL, S</creatorcontrib><creatorcontrib>VANEL, L</creatorcontrib><creatorcontrib>VIGIER, G</creatorcontrib><creatorcontrib>GODIN, N</creatorcontrib><creatorcontrib>CILIBERTO, S</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of fracture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DESCHANEL, S</au><au>VANEL, L</au><au>VIGIER, G</au><au>GODIN, N</au><au>CILIBERTO, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density</atitle><jtitle>International journal of fracture</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>140</volume><issue>1-4</issue><spage>87</spage><epage>98</epage><pages>87-98</pages><issn>0376-9429</issn><eissn>1573-2673</eissn><coden>IJFRAP</coden><abstract>We report tensile failure experiments on polyurethane (PU) foams. Experiments have been performed by imposing a constant strain rate. We work on heterogeneous materials for whom the failure does not occur suddenly and can develop as a multistep process through a succession of microcracks that end at pores. The acoustic energy and the waiting times between acoustic events follow power-law distributions. This remains true while the foam density is varied. However, experiments at low temperatures (PU foams more brittle) have not yielded power-laws for the waiting times. The cumulative acoustic energy has no power-law divergence at the proximity of the failure point which is qualitatively in agreement with other experiments done at imposed strain. We notice a plateau in cumulative acoustic energy that seems to occur when a single crack starts to propagate.</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/s10704-006-0051-1</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1013-8201</orcidid><orcidid>https://orcid.org/0000-0001-9137-729X</orcidid><orcidid>https://orcid.org/0000-0003-3813-1594</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0376-9429
ispartof International journal of fracture, 2006-07, Vol.140 (1-4), p.87-98
issn 0376-9429
1573-2673
language eng
recordid cdi_hal_primary_oai_HAL_ensl_00156937v1
source Springer Nature
subjects Acoustics
Condensed Matter
Crack initiation
Cross-disciplinary physics: materials science
rheology
Density
Divergence
Exact sciences and technology
Experiments
Failure
Foams
Fracture mechanics
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Materials Science
Materials testing
Mechanics
Mechanics of materials
Microcracks
Physics
Plastic foam
Plutonium
Polyurethane foam
Power law
Solid mechanics
Strain rate
Structural and continuum mechanics
Tensile tests
title Statistical properties of microcracking in polyurethane foams under tensile test, influence of temperature and density
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T15%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20properties%20of%20microcracking%20in%20polyurethane%20foams%20under%20tensile%20test,%20influence%20of%20temperature%20and%20density&rft.jtitle=International%20journal%20of%20fracture&rft.au=DESCHANEL,%20S&rft.date=2006-07-01&rft.volume=140&rft.issue=1-4&rft.spage=87&rft.epage=98&rft.pages=87-98&rft.issn=0376-9429&rft.eissn=1573-2673&rft.coden=IJFRAP&rft_id=info:doi/10.1007/s10704-006-0051-1&rft_dat=%3Cproquest_hal_p%3E29071103%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c435t-515ed3fa1ccc6a37cf615d61a20b29c0d0668715b3d083ef4a6dfcd76bc67eb13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259868056&rft_id=info:pmid/&rfr_iscdi=true