Loading…

On Ziv's Rounding Test

A very simple test, introduced by Ziv, allows one to determine if an approximation to the value f(x) of an elementary function at a given point x suffices to return the floating-point number nearest f(x) . The same test may be used when implementing floating-point operations with input and output op...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on mathematical software 2013-07, Vol.39 (4), p.1-19
Main Authors: DE DINECHIN, Florent, LAUTER, Christoph, MULLER, Jean-Michel, TORRES, Serge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-70b88cef612c605a021a1840a4d9a72cf08ee3f2d6499297f3d22da469c9ef5c3
cites cdi_FETCH-LOGICAL-c339t-70b88cef612c605a021a1840a4d9a72cf08ee3f2d6499297f3d22da469c9ef5c3
container_end_page 19
container_issue 4
container_start_page 1
container_title ACM transactions on mathematical software
container_volume 39
creator DE DINECHIN, Florent
LAUTER, Christoph
MULLER, Jean-Michel
TORRES, Serge
description A very simple test, introduced by Ziv, allows one to determine if an approximation to the value f(x) of an elementary function at a given point x suffices to return the floating-point number nearest f(x) . The same test may be used when implementing floating-point operations with input and output operands of different formats, using arithmetic operators tailored for manipulating operands of the same format. That test depends on a “magic constant” e . We show how to choose that constant e to make the test reliable and efficient. Various cases are considered, depending on the availability of an fma instruction, and on the range of f(x) .
doi_str_mv 10.1145/2491491.2491495
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_ensl_00693317v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1506364920</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-70b88cef612c605a021a1840a4d9a72cf08ee3f2d6499297f3d22da469c9ef5c3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFaveu1FFCHtzH5mj6WoFQIFqRcvy7rZ1Uia1Gxb8N-7klAYeC_PPDO8hNwgTBG5mFGuMc20T3FCRiiEyhTV4pSMAHSeMQFwTi5i_AYAigpH5HrVTN6rw12cvLb7pqyaz8nax90lOQu2jv5qyDF5e3pcL5ZZsXp-WcyLzDGmd5mCjzx3PkikToKwSWox52B5qa2iLkDuPQu0lFxrqlVgJaWl5VI77YNwbEweeu-Xrc22qza2-zWtrcxyXhjfxNoASM0YqgNN8H0Pb7v2Z5--NJsqOl_XtvHtPhoUIFm6RCGhsx51XRtj58NRjmD-6zJDXUOKtHE7yG10tg6dbVwVj2s0BwTgkv0B9x1lng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506364920</pqid></control><display><type>article</type><title>On Ziv's Rounding Test</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>DE DINECHIN, Florent ; LAUTER, Christoph ; MULLER, Jean-Michel ; TORRES, Serge</creator><creatorcontrib>DE DINECHIN, Florent ; LAUTER, Christoph ; MULLER, Jean-Michel ; TORRES, Serge</creatorcontrib><description>A very simple test, introduced by Ziv, allows one to determine if an approximation to the value f(x) of an elementary function at a given point x suffices to return the floating-point number nearest f(x) . The same test may be used when implementing floating-point operations with input and output operands of different formats, using arithmetic operators tailored for manipulating operands of the same format. That test depends on a “magic constant” e . We show how to choose that constant e to make the test reliable and efficient. Various cases are considered, depending on the availability of an fma instruction, and on the range of f(x) .</description><identifier>ISSN: 0098-3500</identifier><identifier>EISSN: 1557-7295</identifier><identifier>DOI: 10.1145/2491491.2491495</identifier><identifier>CODEN: ACMSCU</identifier><language>eng</language><publisher>New York, NY: Association for Computing Machinery</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Approximation ; Computer Science ; Computer science; control theory; systems ; Electronics ; Exact sciences and technology ; Integrated circuits ; Integrated circuits by function (including memories and processors) ; Language processing and microprogramming ; Other ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Software ; Theoretical computing</subject><ispartof>ACM transactions on mathematical software, 2013-07, Vol.39 (4), p.1-19</ispartof><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-70b88cef612c605a021a1840a4d9a72cf08ee3f2d6499297f3d22da469c9ef5c3</citedby><cites>FETCH-LOGICAL-c339t-70b88cef612c605a021a1840a4d9a72cf08ee3f2d6499297f3d22da469c9ef5c3</cites><orcidid>0000-0003-3588-0047 ; 0000-0001-7335-8220 ; 0000-0003-4927-3301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28010046$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://ens-lyon.hal.science/ensl-00693317$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>DE DINECHIN, Florent</creatorcontrib><creatorcontrib>LAUTER, Christoph</creatorcontrib><creatorcontrib>MULLER, Jean-Michel</creatorcontrib><creatorcontrib>TORRES, Serge</creatorcontrib><title>On Ziv's Rounding Test</title><title>ACM transactions on mathematical software</title><description>A very simple test, introduced by Ziv, allows one to determine if an approximation to the value f(x) of an elementary function at a given point x suffices to return the floating-point number nearest f(x) . The same test may be used when implementing floating-point operations with input and output operands of different formats, using arithmetic operators tailored for manipulating operands of the same format. That test depends on a “magic constant” e . We show how to choose that constant e to make the test reliable and efficient. Various cases are considered, depending on the availability of an fma instruction, and on the range of f(x) .</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Approximation</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Integrated circuits</subject><subject>Integrated circuits by function (including memories and processors)</subject><subject>Language processing and microprogramming</subject><subject>Other</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Software</subject><subject>Theoretical computing</subject><issn>0098-3500</issn><issn>1557-7295</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFaveu1FFCHtzH5mj6WoFQIFqRcvy7rZ1Uia1Gxb8N-7klAYeC_PPDO8hNwgTBG5mFGuMc20T3FCRiiEyhTV4pSMAHSeMQFwTi5i_AYAigpH5HrVTN6rw12cvLb7pqyaz8nax90lOQu2jv5qyDF5e3pcL5ZZsXp-WcyLzDGmd5mCjzx3PkikToKwSWox52B5qa2iLkDuPQu0lFxrqlVgJaWl5VI77YNwbEweeu-Xrc22qza2-zWtrcxyXhjfxNoASM0YqgNN8H0Pb7v2Z5--NJsqOl_XtvHtPhoUIFm6RCGhsx51XRtj58NRjmD-6zJDXUOKtHE7yG10tg6dbVwVj2s0BwTgkv0B9x1lng</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>DE DINECHIN, Florent</creator><creator>LAUTER, Christoph</creator><creator>MULLER, Jean-Michel</creator><creator>TORRES, Serge</creator><general>Association for Computing Machinery</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3588-0047</orcidid><orcidid>https://orcid.org/0000-0001-7335-8220</orcidid><orcidid>https://orcid.org/0000-0003-4927-3301</orcidid></search><sort><creationdate>20130701</creationdate><title>On Ziv's Rounding Test</title><author>DE DINECHIN, Florent ; LAUTER, Christoph ; MULLER, Jean-Michel ; TORRES, Serge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-70b88cef612c605a021a1840a4d9a72cf08ee3f2d6499297f3d22da469c9ef5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Approximation</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Integrated circuits</topic><topic>Integrated circuits by function (including memories and processors)</topic><topic>Language processing and microprogramming</topic><topic>Other</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Software</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DE DINECHIN, Florent</creatorcontrib><creatorcontrib>LAUTER, Christoph</creatorcontrib><creatorcontrib>MULLER, Jean-Michel</creatorcontrib><creatorcontrib>TORRES, Serge</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ACM transactions on mathematical software</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DE DINECHIN, Florent</au><au>LAUTER, Christoph</au><au>MULLER, Jean-Michel</au><au>TORRES, Serge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Ziv's Rounding Test</atitle><jtitle>ACM transactions on mathematical software</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>39</volume><issue>4</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0098-3500</issn><eissn>1557-7295</eissn><coden>ACMSCU</coden><abstract>A very simple test, introduced by Ziv, allows one to determine if an approximation to the value f(x) of an elementary function at a given point x suffices to return the floating-point number nearest f(x) . The same test may be used when implementing floating-point operations with input and output operands of different formats, using arithmetic operators tailored for manipulating operands of the same format. That test depends on a “magic constant” e . We show how to choose that constant e to make the test reliable and efficient. Various cases are considered, depending on the availability of an fma instruction, and on the range of f(x) .</abstract><cop>New York, NY</cop><pub>Association for Computing Machinery</pub><doi>10.1145/2491491.2491495</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3588-0047</orcidid><orcidid>https://orcid.org/0000-0001-7335-8220</orcidid><orcidid>https://orcid.org/0000-0003-4927-3301</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-3500
ispartof ACM transactions on mathematical software, 2013-07, Vol.39 (4), p.1-19
issn 0098-3500
1557-7295
language eng
recordid cdi_hal_primary_oai_HAL_ensl_00693317v2
source Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Approximation
Computer Science
Computer science
control theory
systems
Electronics
Exact sciences and technology
Integrated circuits
Integrated circuits by function (including memories and processors)
Language processing and microprogramming
Other
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Software
Theoretical computing
title On Ziv's Rounding Test
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Ziv's%20Rounding%20Test&rft.jtitle=ACM%20transactions%20on%20mathematical%20software&rft.au=DE%20DINECHIN,%20Florent&rft.date=2013-07-01&rft.volume=39&rft.issue=4&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0098-3500&rft.eissn=1557-7295&rft.coden=ACMSCU&rft_id=info:doi/10.1145/2491491.2491495&rft_dat=%3Cproquest_hal_p%3E1506364920%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-70b88cef612c605a021a1840a4d9a72cf08ee3f2d6499297f3d22da469c9ef5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1506364920&rft_id=info:pmid/&rfr_iscdi=true