Loading…
An alternative to the cosmological “concordance model”
Precision measurements of the cosmic microwave background by WMAP are believed to have established a flat Λ-dominated universe, seeded by nearly scale-invariant adiabatic primordial fluctuations. However by relaxing the hypothesis that the fluctuation spectrum can be described by a single power law,...
Saved in:
Published in: | Astronomy and astrophysics (Berlin) 2003-12, Vol.412 (1), p.35-44 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Precision measurements of the cosmic microwave background by WMAP are believed to have established a flat Λ-dominated universe, seeded by nearly scale-invariant adiabatic primordial fluctuations. However by relaxing the hypothesis that the fluctuation spectrum can be described by a single power law, we demonstrate that an Einstein-de Sitter universe with zero cosmological constant can fit the data as well as the best concordance model. Moreover unlike a Λ-dominated universe, such an universe has no strong integrated Sachs-Wolfe effect, so is in better agreement with the low quadrupole seen by WMAP. The main concern is that the Hubble constant is required to be rather low: $H_0 \simeq 46$ km s-1 Mpc-1; we discuss whether this can be consistent with observations. Furthermore for universes consisting only of baryons and cold dark matter, the amplitude of matter fluctuations on cluster scales is too high, a problem which seems generic. However, an additional small contribution ($\Omega_{\rm X} \sim 0.1$) of matter which does not cluster on small scales, e.g. relic neutrinos with mass of order eV or a “quintessence” with $w \sim 0$, can alleviate this problem. Such models provide a satisfying description of the power spectrum derived from the 2dF galaxy redshift survey and from observations of the Ly-α forest. We conclude that Einstein-de Sitter models can indeed accommodate all data on the large scale structure of the Universe, hence the Hubble diagram of distant type Ia supernovae remains the only direct evidence for a non-zero cosmological constant. |
---|---|
ISSN: | 0004-6361 1432-0746 1432-0756 |
DOI: | 10.1051/0004-6361:20031425 |