Loading…
Renormalization group approach to matrix models
Matrix models of 2D quantum gravity are either exactly solvable for matter of central charge c ⩽ 1, or not understood. It would be useful to devise an approximate scheme which would be reasonable for the known cases and could be carried to the unsolved cases in order to achieve at least a qualitativ...
Saved in:
Published in: | Physics letters. B 1992-08, Vol.288 (1), p.54-58 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c433t-422cf31e26c2fc418c9d26eec70bbda2ec312aa77289f96bc59cdc10bcab23f53 |
---|---|
cites | cdi_FETCH-LOGICAL-c433t-422cf31e26c2fc418c9d26eec70bbda2ec312aa77289f96bc59cdc10bcab23f53 |
container_end_page | 58 |
container_issue | 1 |
container_start_page | 54 |
container_title | Physics letters. B |
container_volume | 288 |
creator | Brézin, Edouard Zinn-Justin, Jean |
description | Matrix models of 2D quantum gravity are either exactly solvable for matter of central charge
c ⩽ 1, or not understood. It would be useful to devise an approximate scheme which would be reasonable for the known cases and could be carried to the unsolved cases in order to achieve at least a qualitative understanding of the properties of the models. The double scaling limit is an indication that a change of the length scale induces a flow in the parameters of the theory, the size of the matrix and the coupling constants for matrix models, at constant long distance physics. We construct here these renormalization group equations at lowest orders in various cases to check that we reproduce qualitatively the properties of
c |
doi_str_mv | 10.1016/0370-2693(92)91953-7 |
format | article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00005216v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>0370269392919537</els_id><sourcerecordid>0370269392919537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-422cf31e26c2fc418c9d26eec70bbda2ec312aa77289f96bc59cdc10bcab23f53</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gYccPNhD7H7lYy9CKWqFgiB6XiaTjV1JsmE3FvXXmxjp0dPA8DwzvC8hl4zeMMrSJRUZjXmqxLXiC8VUIuLsiMxYnomYS5kck9kBOSVnIbxTSllC0xlZPpvW-QZq-w29dW305t1HF0HXeQe4i3oXNdB7-xk1rjR1OCcnFdTBXPzNOXm9v3tZb-Lt08PjerWNUQrRx5JzrAQzPEVeoWQ5qpKnxmBGi6IEblAwDpBlPFeVSgtMFJbIaIFQcFElYk4W090d1LrztgH_pR1YvVlt9bgbEtCEs3TPBlZOLHoXgjfVQWBUjwXpMb0e02vF9W9BOhu0q0nrICDUlYcWbTi4UgxmrgbsdsKG9GZvjdcBrWnRlNYb7HXp7P9_fgCJf3kL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Renormalization group approach to matrix models</title><source>ScienceDirect</source><creator>Brézin, Edouard ; Zinn-Justin, Jean</creator><creatorcontrib>Brézin, Edouard ; Zinn-Justin, Jean</creatorcontrib><description>Matrix models of 2D quantum gravity are either exactly solvable for matter of central charge
c ⩽ 1, or not understood. It would be useful to devise an approximate scheme which would be reasonable for the known cases and could be carried to the unsolved cases in order to achieve at least a qualitative understanding of the properties of the models. The double scaling limit is an indication that a change of the length scale induces a flow in the parameters of the theory, the size of the matrix and the coupling constants for matrix models, at constant long distance physics. We construct here these renormalization group equations at lowest orders in various cases to check that we reproduce qualitatively the properties of
c </ 1 models.</description><identifier>ISSN: 0370-2693</identifier><identifier>EISSN: 1873-2445</identifier><identifier>DOI: 10.1016/0370-2693(92)91953-7</identifier><identifier>CODEN: PYLBAJ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; General relativity and gravitation ; High Energy Physics - Theory ; Physics ; Quantum gravity</subject><ispartof>Physics letters. B, 1992-08, Vol.288 (1), p.54-58</ispartof><rights>1992</rights><rights>1993 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-422cf31e26c2fc418c9d26eec70bbda2ec312aa77289f96bc59cdc10bcab23f53</citedby><cites>FETCH-LOGICAL-c433t-422cf31e26c2fc418c9d26eec70bbda2ec312aa77289f96bc59cdc10bcab23f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/0370269392919537$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4301689$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00005216$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brézin, Edouard</creatorcontrib><creatorcontrib>Zinn-Justin, Jean</creatorcontrib><title>Renormalization group approach to matrix models</title><title>Physics letters. B</title><description>Matrix models of 2D quantum gravity are either exactly solvable for matter of central charge
c ⩽ 1, or not understood. It would be useful to devise an approximate scheme which would be reasonable for the known cases and could be carried to the unsolved cases in order to achieve at least a qualitative understanding of the properties of the models. The double scaling limit is an indication that a change of the length scale induces a flow in the parameters of the theory, the size of the matrix and the coupling constants for matrix models, at constant long distance physics. We construct here these renormalization group equations at lowest orders in various cases to check that we reproduce qualitatively the properties of
c </ 1 models.</description><subject>Exact sciences and technology</subject><subject>General relativity and gravitation</subject><subject>High Energy Physics - Theory</subject><subject>Physics</subject><subject>Quantum gravity</subject><issn>0370-2693</issn><issn>1873-2445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1992</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gYccPNhD7H7lYy9CKWqFgiB6XiaTjV1JsmE3FvXXmxjp0dPA8DwzvC8hl4zeMMrSJRUZjXmqxLXiC8VUIuLsiMxYnomYS5kck9kBOSVnIbxTSllC0xlZPpvW-QZq-w29dW305t1HF0HXeQe4i3oXNdB7-xk1rjR1OCcnFdTBXPzNOXm9v3tZb-Lt08PjerWNUQrRx5JzrAQzPEVeoWQ5qpKnxmBGi6IEblAwDpBlPFeVSgtMFJbIaIFQcFElYk4W090d1LrztgH_pR1YvVlt9bgbEtCEs3TPBlZOLHoXgjfVQWBUjwXpMb0e02vF9W9BOhu0q0nrICDUlYcWbTi4UgxmrgbsdsKG9GZvjdcBrWnRlNYb7HXp7P9_fgCJf3kL</recordid><startdate>19920820</startdate><enddate>19920820</enddate><creator>Brézin, Edouard</creator><creator>Zinn-Justin, Jean</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>19920820</creationdate><title>Renormalization group approach to matrix models</title><author>Brézin, Edouard ; Zinn-Justin, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-422cf31e26c2fc418c9d26eec70bbda2ec312aa77289f96bc59cdc10bcab23f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1992</creationdate><topic>Exact sciences and technology</topic><topic>General relativity and gravitation</topic><topic>High Energy Physics - Theory</topic><topic>Physics</topic><topic>Quantum gravity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brézin, Edouard</creatorcontrib><creatorcontrib>Zinn-Justin, Jean</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physics letters. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brézin, Edouard</au><au>Zinn-Justin, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Renormalization group approach to matrix models</atitle><jtitle>Physics letters. B</jtitle><date>1992-08-20</date><risdate>1992</risdate><volume>288</volume><issue>1</issue><spage>54</spage><epage>58</epage><pages>54-58</pages><issn>0370-2693</issn><eissn>1873-2445</eissn><coden>PYLBAJ</coden><abstract>Matrix models of 2D quantum gravity are either exactly solvable for matter of central charge
c ⩽ 1, or not understood. It would be useful to devise an approximate scheme which would be reasonable for the known cases and could be carried to the unsolved cases in order to achieve at least a qualitative understanding of the properties of the models. The double scaling limit is an indication that a change of the length scale induces a flow in the parameters of the theory, the size of the matrix and the coupling constants for matrix models, at constant long distance physics. We construct here these renormalization group equations at lowest orders in various cases to check that we reproduce qualitatively the properties of
c </ 1 models.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/0370-2693(92)91953-7</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0370-2693 |
ispartof | Physics letters. B, 1992-08, Vol.288 (1), p.54-58 |
issn | 0370-2693 1873-2445 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00005216v1 |
source | ScienceDirect |
subjects | Exact sciences and technology General relativity and gravitation High Energy Physics - Theory Physics Quantum gravity |
title | Renormalization group approach to matrix models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Renormalization%20group%20approach%20to%20matrix%20models&rft.jtitle=Physics%20letters.%20B&rft.au=Br%C3%A9zin,%20Edouard&rft.date=1992-08-20&rft.volume=288&rft.issue=1&rft.spage=54&rft.epage=58&rft.pages=54-58&rft.issn=0370-2693&rft.eissn=1873-2445&rft.coden=PYLBAJ&rft_id=info:doi/10.1016/0370-2693(92)91953-7&rft_dat=%3Celsevier_hal_p%3E0370269392919537%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c433t-422cf31e26c2fc418c9d26eec70bbda2ec312aa77289f96bc59cdc10bcab23f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |