Loading…
Dynamo effect in parity-invariant flow with large and moderate separation of scales
It is shown that non-helical (more precisely, parity-invariant) flows capable of sustaining a large-scale dynamo by the negative magnetic eddy diffusivity effect are quite common. This conclusion is based on numerical examination of a large number of randomly selected flows. Few outliers with strong...
Saved in:
Published in: | Geophysical and astrophysical fluid dynamics 2001, Vol.97, p.225-248 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is shown that non-helical (more precisely, parity-invariant) flows capable of sustaining a large-scale dynamo by the negative magnetic eddy diffusivity effect are quite common. This conclusion is based on numerical examination of a large number of randomly selected flows. Few outliers with strongly negative eddy diffusivities are also found, and they are interpreted in terms of the closeness of the control parameter to a critical value for generation of a small-scale magnetic field. Furthermore, it is shown that, for parity-invariant flows, a moderate separation of scales between the basic flow and the magnetic field often significantly reduces the critical magnetic Reynolds number for the onset of dynamo action. |
---|---|
ISSN: | 0309-1929 1029-0419 |