Loading…
Wave front engineering for microscopy of living cells
A new method to perform simultaneously three dimensional optical sectioning and optical manipulation is presented. The system combines a multi trap optical tweezers with a video microscope to enable axial scanning of living cells while maintaining the trapping configuration at a fixed position. This...
Saved in:
Published in: | Optics express 2005-03, Vol.13 (5), p.1395-1405 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new method to perform simultaneously three dimensional optical sectioning and optical manipulation is presented. The system combines a multi trap optical tweezers with a video microscope to enable axial scanning of living cells while maintaining the trapping configuration at a fixed position. This is achieved compensating the axial movement of the objective by shaping the wave front of the trapping beam with properly diffractive optical elements displayed on a computer controlled spatial light modulator. Our method has been validated in three different experimental configurations. In the first, we decouple the position of a trapping plane from the axial movements of the objective and perform optical sectioning of a circle of beads kept on a fixed plane. In a second experiment, we extend the method to living cell microscopy by showing that mechanical constraints can be applied on the dorsal surface of a cell whilst performing its fluorescence optical sectioning. In the third experiment, we trapped beads in a three dimensional geometry and perform, always through the same objective, an axial scan of the volume delimited by the beads. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OPEX.13.001395 |