Loading…
Arithmetic theory of q-difference equations: The q-analogue of Grothendieck-Katz’s conjecture on p-curvatures
Grothendieck's conjecture on p-curvatures predicts that an arithmetic differential equation has a full set of algebraic solutions if and only if its reduction in positive characteristic has a full set of rational solutions for almost all finite places. It is equivalent to Katz's conjectura...
Saved in:
Published in: | Inventiones mathematicae 2002-12, Vol.150 (3), p.517-578 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 578 |
container_issue | 3 |
container_start_page | 517 |
container_title | Inventiones mathematicae |
container_volume | 150 |
creator | Di Vizio, Lucia |
description | Grothendieck's conjecture on p-curvatures predicts that an arithmetic differential equation has a full set of algebraic solutions if and only if its reduction in positive characteristic has a full set of rational solutions for almost all finite places. It is equivalent to Katz's conjectural description of the generic Galois group. In this paper we prove an analogous statement for arithmetic q-difference equation. |
doi_str_mv | 10.1007/s00222-002-0241-z |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00021535v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418719491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c256t-300ae98cb0f5c12e91cc73d50033d4b2784d52f05b1fc77979b22400c24412f43</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWKs_wNviTSQ6M0mazbEUtULBi57DbjahW9pum2yF9tebsuJhZmDex2PmMXaP8IwA-iUBEBHPnQNJ5KcLNkIpiCMZfclGWQBuDMI1u0lpBZBFTSP2NI1tv9z4vnVFv_RdPBZdKPa8aUPw0W-dL_z-UPVtt0237CpU6-Tv_uaYfb-9fs3mfPH5_jGbLrgjNem5AKi8KV0NQTkkb9A5LRoFIEQja9KlbBQFUDUGp7XRpiaSAI6kRApSjNnj4Lus1nYX200Vj7arWjufLux5B_kbVEL9YGYfBnYXu_3Bp96uukPc5vNsWaIwcqLOEA6Qi11K0Yd_VwR7js8O8WXjXDk-exK_mypfzg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881394651</pqid></control><display><type>article</type><title>Arithmetic theory of q-difference equations: The q-analogue of Grothendieck-Katz’s conjecture on p-curvatures</title><source>Springer Nature</source><creator>Di Vizio, Lucia</creator><creatorcontrib>Di Vizio, Lucia</creatorcontrib><description>Grothendieck's conjecture on p-curvatures predicts that an arithmetic differential equation has a full set of algebraic solutions if and only if its reduction in positive characteristic has a full set of rational solutions for almost all finite places. It is equivalent to Katz's conjectural description of the generic Galois group. In this paper we prove an analogous statement for arithmetic q-difference equation.</description><identifier>ISSN: 0020-9910</identifier><identifier>EISSN: 1432-1297</identifier><identifier>DOI: 10.1007/s00222-002-0241-z</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Mathematics ; Number Theory ; Quantum Algebra</subject><ispartof>Inventiones mathematicae, 2002-12, Vol.150 (3), p.517-578</ispartof><rights>Springer-Verlag Berlin Heidelberg 2002</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-4313-9072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00021535$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Di Vizio, Lucia</creatorcontrib><title>Arithmetic theory of q-difference equations: The q-analogue of Grothendieck-Katz’s conjecture on p-curvatures</title><title>Inventiones mathematicae</title><description>Grothendieck's conjecture on p-curvatures predicts that an arithmetic differential equation has a full set of algebraic solutions if and only if its reduction in positive characteristic has a full set of rational solutions for almost all finite places. It is equivalent to Katz's conjectural description of the generic Galois group. In this paper we prove an analogous statement for arithmetic q-difference equation.</description><subject>Mathematics</subject><subject>Number Theory</subject><subject>Quantum Algebra</subject><issn>0020-9910</issn><issn>1432-1297</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEQhYMoWKs_wNviTSQ6M0mazbEUtULBi57DbjahW9pum2yF9tebsuJhZmDex2PmMXaP8IwA-iUBEBHPnQNJ5KcLNkIpiCMZfclGWQBuDMI1u0lpBZBFTSP2NI1tv9z4vnVFv_RdPBZdKPa8aUPw0W-dL_z-UPVtt0237CpU6-Tv_uaYfb-9fs3mfPH5_jGbLrgjNem5AKi8KV0NQTkkb9A5LRoFIEQja9KlbBQFUDUGp7XRpiaSAI6kRApSjNnj4Lus1nYX200Vj7arWjufLux5B_kbVEL9YGYfBnYXu_3Bp96uukPc5vNsWaIwcqLOEA6Qi11K0Yd_VwR7js8O8WXjXDk-exK_mypfzg</recordid><startdate>20021201</startdate><enddate>20021201</enddate><creator>Di Vizio, Lucia</creator><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4313-9072</orcidid></search><sort><creationdate>20021201</creationdate><title>Arithmetic theory of q-difference equations</title><author>Di Vizio, Lucia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c256t-300ae98cb0f5c12e91cc73d50033d4b2784d52f05b1fc77979b22400c24412f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Mathematics</topic><topic>Number Theory</topic><topic>Quantum Algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Di Vizio, Lucia</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Inventiones mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Di Vizio, Lucia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arithmetic theory of q-difference equations: The q-analogue of Grothendieck-Katz’s conjecture on p-curvatures</atitle><jtitle>Inventiones mathematicae</jtitle><date>2002-12-01</date><risdate>2002</risdate><volume>150</volume><issue>3</issue><spage>517</spage><epage>578</epage><pages>517-578</pages><issn>0020-9910</issn><eissn>1432-1297</eissn><abstract>Grothendieck's conjecture on p-curvatures predicts that an arithmetic differential equation has a full set of algebraic solutions if and only if its reduction in positive characteristic has a full set of rational solutions for almost all finite places. It is equivalent to Katz's conjectural description of the generic Galois group. In this paper we prove an analogous statement for arithmetic q-difference equation.</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00222-002-0241-z</doi><tpages>62</tpages><orcidid>https://orcid.org/0000-0003-4313-9072</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-9910 |
ispartof | Inventiones mathematicae, 2002-12, Vol.150 (3), p.517-578 |
issn | 0020-9910 1432-1297 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00021535v1 |
source | Springer Nature |
subjects | Mathematics Number Theory Quantum Algebra |
title | Arithmetic theory of q-difference equations: The q-analogue of Grothendieck-Katz’s conjecture on p-curvatures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A46%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arithmetic%20theory%20of%20q-difference%20equations:%20The%20q-analogue%20of%20Grothendieck-Katz%E2%80%99s%20conjecture%20on%20p-curvatures&rft.jtitle=Inventiones%20mathematicae&rft.au=Di%20Vizio,%20Lucia&rft.date=2002-12-01&rft.volume=150&rft.issue=3&rft.spage=517&rft.epage=578&rft.pages=517-578&rft.issn=0020-9910&rft.eissn=1432-1297&rft_id=info:doi/10.1007/s00222-002-0241-z&rft_dat=%3Cproquest_hal_p%3E2418719491%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c256t-300ae98cb0f5c12e91cc73d50033d4b2784d52f05b1fc77979b22400c24412f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=881394651&rft_id=info:pmid/&rfr_iscdi=true |