Loading…
Three-dimensional modelling of micromachined-ultrasonic-transducer arrays operating in water
We report on the 3-D modelling of periodic arrays of capacitive micromachined ultrasonic transducers (cMUTs) operating in fluid. Specific developments have been performed to model biperiodic transducer arrays and to take into account radiation into any stratified media at the front-side as well as t...
Saved in:
Published in: | Ultrasonics 2005-05, Vol.43 (6), p.457-465 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report on the 3-D modelling of periodic arrays of capacitive micromachined ultrasonic transducers (cMUTs) operating in fluid. Specific developments have been performed to model biperiodic transducer arrays and to take into account radiation into any stratified media at the front-side as well as the back-side of the device. The model is based on a periodic finite-element-analysis/boundary-element-method (FEA/BEM). It is applied to micromachined ultrasonic transducers (MUTs), based on silicon-nitride-circular-membrane arrays on a silicon substrate, and operating in water. The spectrum characteristics of MUTs excited in phase are investigated, showing that very-large-band emission is achievable as previously demonstrated by many authors. However, other contributions are also found, depending on the excitation conditions, that do not radiate in the fluid. These contributions are identified as guided modes that could generate significant cross-talk effects. The origin and the nature of these modes is analyzed to gain insight in the actual operation of MUTs. |
---|---|
ISSN: | 0041-624X 1874-9968 |
DOI: | 10.1016/j.ultras.2004.09.006 |