Loading…

SU5: a calibrated variable-polarization synchrotron radiation beam line in the vacuum-ultraviolet range

SU5 is a high-resolution variable-polarization synchrotron radiation (SR) beam line with which linear and circular dichroism experiments are performed in the vacuum ultraviolet (VUV) range (5-40eV), based on an electromagnetic crossed undulator called the Onduleur Plan/Helicoidal du Lure à Induction...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2004-02, Vol.43 (5), p.1024-1037
Main Authors: Nahon, Laurent, Alcaraz, Christian
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:SU5 is a high-resolution variable-polarization synchrotron radiation (SR) beam line with which linear and circular dichroism experiments are performed in the vacuum ultraviolet (VUV) range (5-40eV), based on an electromagnetic crossed undulator called the Onduleur Plan/Helicoidal du Lure à Induction Electromagnétique (OPHELIE). To get precise knowledge of the polarization state of the emitted SR and to take into account the polarization transformations induced by reflection on the various optics, we set up an in situ VUV polarimeter to provide a precise and complete polarization analysis of the SR atthe sample location. The overall measured polarization performances were highly satisfactory, with measured linear polarization rates of more than 98% (83%) in the vertical (horizontal) linear polarization mode and an average 92.1% (95.2%) circular polarization rate for the right- (left)-handed circular polarization mode, which, to our knowledge, are the highest reported values in the VUV range. Despite some uneven photon energy efficiency, the OPHELIE crossed undulator behaves as expected in terms of polarization, permitting full control of the emitted polarization by manipulation of the vertical-to-horizontal magnetic field ratio (rho(und)) and the relative longitudinal phase (phi(und)).
ISSN:1559-128X
2155-3165
DOI:10.1364/ao.43.001024