Loading…

Starch division and partitioning. A mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri

Whereas Glc is stored in small-sized hydrosoluble glycogen particles in archaea, eubacteria, fungi, and animal cells, photosynthetic eukaryotes have resorted to building starch, which is composed of several distinct polysaccharide fractions packed into a highly organized semicrystalline granule. In...

Full description

Saved in:
Bibliographic Details
Published in:Plant physiology (Bethesda) 2004-10, Vol.136 (2), p.3333-3340
Main Authors: Ral, J.P, Derelle, E, Ferraz, C, Wattebled, F, Farinas, B, Corellou, F, Buleon, A, Slomianny, M.C, Delvalle, D, d'Hulst, C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c573t-c1d2ef2ad2919cb359b9cf5c92f6055433e5ff66d04241bd7d7672ba783061ec3
cites cdi_FETCH-LOGICAL-c573t-c1d2ef2ad2919cb359b9cf5c92f6055433e5ff66d04241bd7d7672ba783061ec3
container_end_page 3340
container_issue 2
container_start_page 3333
container_title Plant physiology (Bethesda)
container_volume 136
creator Ral, J.P
Derelle, E
Ferraz, C
Wattebled, F
Farinas, B
Corellou, F
Buleon, A
Slomianny, M.C
Delvalle, D
d'Hulst, C
description Whereas Glc is stored in small-sized hydrosoluble glycogen particles in archaea, eubacteria, fungi, and animal cells, photosynthetic eukaryotes have resorted to building starch, which is composed of several distinct polysaccharide fractions packed into a highly organized semicrystalline granule. In plants, both the initiation of polysaccharide synthesis and the nucleation mechanism leading to formation of new starch granules are currently not understood. Ostreococcus tauri, a unicellular green alga of the Prasinophyceae family, defines the tiniest eukaryote with one of the smallest genomes. We show that it accumulates a single starch granule at the chloroplast center by using the same pathway as higher plants. At the time of plastid division, we observe elongation of the starch and division into two daughter structures that are partitioned in each newly formed chloroplast. These observations suggest that in this system the information required to initiate crystalline polysaccharide growth of a new granule is contained within the preexisting polysaccharide structure and the design of the plastid division machinery.
doi_str_mv 10.1104/pp.104.044131
format article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00085499v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4356682</jstor_id><sourcerecordid>4356682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-c1d2ef2ad2919cb359b9cf5c92f6055433e5ff66d04241bd7d7672ba783061ec3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEokvhyA2BLyBxyOLvxMdVRVuklXooPUezjrPrksTBdir1T_CbmVWW9shpbM8zr2f8uijeM7pmjMpv07TGsKZSMsFeFCumBC-5kvXLYkUprmldm7PiTUr3lFJk5OvijCkpa2bUqvhzmyHaA2n9g08-jATGlkwQs8-48-N-TTZkcPYAo08D6UIk-wjj3DsyxTDBHvK_qgH8mN0Io3XEjyQfEPE2TIfHHKYexl8ZBS2WO4cF_R7ITcrRBRusnRPJMEf_tnjVQZ_cu1M8L-4uv_-8uC63N1c_Ljbb0qpK5NKylruOQ8sNM3YnlNkZ2ylreKepUlIIp7pO65ZKLtmurdpKV3wHVS2oZs6K8-LronuAvpmiHyA-NgF8c73ZNsczfKtaSWMeGLJfFhYH_j27lJvBJ-t6HMmFOTVam1pp7Ot_IMPreSWOiuUC2hhSiq57aoHR5uhqM03NMSyuIv_xJDzvBtc-0ycbEfh8AiBZ6Dt0yPr0zGlmhJA1ch8W7j7lEJ_yUiita47pT0u6g9DAPqLE3S3HT0Op0RSbEX8Bi_a-ig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17832731</pqid></control><display><type>article</type><title>Starch division and partitioning. A mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri</title><source>Oxford Journals Online</source><source>JSTOR Archival Journals</source><creator>Ral, J.P ; Derelle, E ; Ferraz, C ; Wattebled, F ; Farinas, B ; Corellou, F ; Buleon, A ; Slomianny, M.C ; Delvalle, D ; d'Hulst, C</creator><creatorcontrib>Ral, J.P ; Derelle, E ; Ferraz, C ; Wattebled, F ; Farinas, B ; Corellou, F ; Buleon, A ; Slomianny, M.C ; Delvalle, D ; d'Hulst, C</creatorcontrib><description>Whereas Glc is stored in small-sized hydrosoluble glycogen particles in archaea, eubacteria, fungi, and animal cells, photosynthetic eukaryotes have resorted to building starch, which is composed of several distinct polysaccharide fractions packed into a highly organized semicrystalline granule. In plants, both the initiation of polysaccharide synthesis and the nucleation mechanism leading to formation of new starch granules are currently not understood. Ostreococcus tauri, a unicellular green alga of the Prasinophyceae family, defines the tiniest eukaryote with one of the smallest genomes. We show that it accumulates a single starch granule at the chloroplast center by using the same pathway as higher plants. At the time of plastid division, we observe elongation of the starch and division into two daughter structures that are partitioned in each newly formed chloroplast. These observations suggest that in this system the information required to initiate crystalline polysaccharide growth of a new granule is contained within the preexisting polysaccharide structure and the design of the plastid division machinery.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.104.044131</identifier><identifier>PMID: 15448195</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>adenosine diphosphate ; Adenosine Diphosphate Glucose - metabolism ; Algae ; algae and seaweeds ; biochemical pathways ; Biochemistry ; Biochemistry, Molecular Biology ; Biological and medical sciences ; carbohydrate metabolism ; carbohydrate structure ; cell cycle ; Cell Cycle - physiology ; Chlorophycota ; Chlorophyta - cytology ; Chlorophyta - metabolism ; Chlorophyta - ultrastructure ; Chloroplasts - metabolism ; Cytoplasmic Granules - metabolism ; Enzymes ; Evolution ; Fundamental and applied biological sciences. Psychology ; Genetics, Genomics, and Molecular Evolution ; Genome ; Genomes ; glucose ; Glycogen ; Life Sciences ; Metabolism ; Molecular Sequence Data ; Ostreococcus tauri ; Photosynthesis, respiration. Anabolism, catabolism ; Phylogeny ; Plant cells ; Plant physiology and development ; Plants ; Plastids ; Polysaccharides ; Prasinophyceae ; Starch - biosynthesis ; starch granules ; Starch Synthase - genetics ; Starch Synthase - metabolism ; Starches</subject><ispartof>Plant physiology (Bethesda), 2004-10, Vol.136 (2), p.3333-3340</ispartof><rights>Copyright 2004 American Society of Plant Biologists</rights><rights>2004 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-c1d2ef2ad2919cb359b9cf5c92f6055433e5ff66d04241bd7d7672ba783061ec3</citedby><cites>FETCH-LOGICAL-c573t-c1d2ef2ad2919cb359b9cf5c92f6055433e5ff66d04241bd7d7672ba783061ec3</cites><orcidid>0000-0003-0041-8557 ; 0000-0001-8026-2120 ; 0000-0002-5556-9099 ; 0000-0002-1499-4240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4356682$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4356682$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16193348$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15448195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00085499$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ral, J.P</creatorcontrib><creatorcontrib>Derelle, E</creatorcontrib><creatorcontrib>Ferraz, C</creatorcontrib><creatorcontrib>Wattebled, F</creatorcontrib><creatorcontrib>Farinas, B</creatorcontrib><creatorcontrib>Corellou, F</creatorcontrib><creatorcontrib>Buleon, A</creatorcontrib><creatorcontrib>Slomianny, M.C</creatorcontrib><creatorcontrib>Delvalle, D</creatorcontrib><creatorcontrib>d'Hulst, C</creatorcontrib><title>Starch division and partitioning. A mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Whereas Glc is stored in small-sized hydrosoluble glycogen particles in archaea, eubacteria, fungi, and animal cells, photosynthetic eukaryotes have resorted to building starch, which is composed of several distinct polysaccharide fractions packed into a highly organized semicrystalline granule. In plants, both the initiation of polysaccharide synthesis and the nucleation mechanism leading to formation of new starch granules are currently not understood. Ostreococcus tauri, a unicellular green alga of the Prasinophyceae family, defines the tiniest eukaryote with one of the smallest genomes. We show that it accumulates a single starch granule at the chloroplast center by using the same pathway as higher plants. At the time of plastid division, we observe elongation of the starch and division into two daughter structures that are partitioned in each newly formed chloroplast. These observations suggest that in this system the information required to initiate crystalline polysaccharide growth of a new granule is contained within the preexisting polysaccharide structure and the design of the plastid division machinery.</description><subject>adenosine diphosphate</subject><subject>Adenosine Diphosphate Glucose - metabolism</subject><subject>Algae</subject><subject>algae and seaweeds</subject><subject>biochemical pathways</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological and medical sciences</subject><subject>carbohydrate metabolism</subject><subject>carbohydrate structure</subject><subject>cell cycle</subject><subject>Cell Cycle - physiology</subject><subject>Chlorophycota</subject><subject>Chlorophyta - cytology</subject><subject>Chlorophyta - metabolism</subject><subject>Chlorophyta - ultrastructure</subject><subject>Chloroplasts - metabolism</subject><subject>Cytoplasmic Granules - metabolism</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics, Genomics, and Molecular Evolution</subject><subject>Genome</subject><subject>Genomes</subject><subject>glucose</subject><subject>Glycogen</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Molecular Sequence Data</subject><subject>Ostreococcus tauri</subject><subject>Photosynthesis, respiration. Anabolism, catabolism</subject><subject>Phylogeny</subject><subject>Plant cells</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Plastids</subject><subject>Polysaccharides</subject><subject>Prasinophyceae</subject><subject>Starch - biosynthesis</subject><subject>starch granules</subject><subject>Starch Synthase - genetics</subject><subject>Starch Synthase - metabolism</subject><subject>Starches</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkk1v1DAQhiMEokvhyA2BLyBxyOLvxMdVRVuklXooPUezjrPrksTBdir1T_CbmVWW9shpbM8zr2f8uijeM7pmjMpv07TGsKZSMsFeFCumBC-5kvXLYkUprmldm7PiTUr3lFJk5OvijCkpa2bUqvhzmyHaA2n9g08-jATGlkwQs8-48-N-TTZkcPYAo08D6UIk-wjj3DsyxTDBHvK_qgH8mN0Io3XEjyQfEPE2TIfHHKYexl8ZBS2WO4cF_R7ITcrRBRusnRPJMEf_tnjVQZ_cu1M8L-4uv_-8uC63N1c_Ljbb0qpK5NKylruOQ8sNM3YnlNkZ2ylreKepUlIIp7pO65ZKLtmurdpKV3wHVS2oZs6K8-LronuAvpmiHyA-NgF8c73ZNsczfKtaSWMeGLJfFhYH_j27lJvBJ-t6HMmFOTVam1pp7Ot_IMPreSWOiuUC2hhSiq57aoHR5uhqM03NMSyuIv_xJDzvBtc-0ycbEfh8AiBZ6Dt0yPr0zGlmhJA1ch8W7j7lEJ_yUiita47pT0u6g9DAPqLE3S3HT0Op0RSbEX8Bi_a-ig</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Ral, J.P</creator><creator>Derelle, E</creator><creator>Ferraz, C</creator><creator>Wattebled, F</creator><creator>Farinas, B</creator><creator>Corellou, F</creator><creator>Buleon, A</creator><creator>Slomianny, M.C</creator><creator>Delvalle, D</creator><creator>d'Hulst, C</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0041-8557</orcidid><orcidid>https://orcid.org/0000-0001-8026-2120</orcidid><orcidid>https://orcid.org/0000-0002-5556-9099</orcidid><orcidid>https://orcid.org/0000-0002-1499-4240</orcidid></search><sort><creationdate>20041001</creationdate><title>Starch division and partitioning. A mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri</title><author>Ral, J.P ; Derelle, E ; Ferraz, C ; Wattebled, F ; Farinas, B ; Corellou, F ; Buleon, A ; Slomianny, M.C ; Delvalle, D ; d'Hulst, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-c1d2ef2ad2919cb359b9cf5c92f6055433e5ff66d04241bd7d7672ba783061ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>adenosine diphosphate</topic><topic>Adenosine Diphosphate Glucose - metabolism</topic><topic>Algae</topic><topic>algae and seaweeds</topic><topic>biochemical pathways</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological and medical sciences</topic><topic>carbohydrate metabolism</topic><topic>carbohydrate structure</topic><topic>cell cycle</topic><topic>Cell Cycle - physiology</topic><topic>Chlorophycota</topic><topic>Chlorophyta - cytology</topic><topic>Chlorophyta - metabolism</topic><topic>Chlorophyta - ultrastructure</topic><topic>Chloroplasts - metabolism</topic><topic>Cytoplasmic Granules - metabolism</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics, Genomics, and Molecular Evolution</topic><topic>Genome</topic><topic>Genomes</topic><topic>glucose</topic><topic>Glycogen</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Molecular Sequence Data</topic><topic>Ostreococcus tauri</topic><topic>Photosynthesis, respiration. Anabolism, catabolism</topic><topic>Phylogeny</topic><topic>Plant cells</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Plastids</topic><topic>Polysaccharides</topic><topic>Prasinophyceae</topic><topic>Starch - biosynthesis</topic><topic>starch granules</topic><topic>Starch Synthase - genetics</topic><topic>Starch Synthase - metabolism</topic><topic>Starches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ral, J.P</creatorcontrib><creatorcontrib>Derelle, E</creatorcontrib><creatorcontrib>Ferraz, C</creatorcontrib><creatorcontrib>Wattebled, F</creatorcontrib><creatorcontrib>Farinas, B</creatorcontrib><creatorcontrib>Corellou, F</creatorcontrib><creatorcontrib>Buleon, A</creatorcontrib><creatorcontrib>Slomianny, M.C</creatorcontrib><creatorcontrib>Delvalle, D</creatorcontrib><creatorcontrib>d'Hulst, C</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ral, J.P</au><au>Derelle, E</au><au>Ferraz, C</au><au>Wattebled, F</au><au>Farinas, B</au><au>Corellou, F</au><au>Buleon, A</au><au>Slomianny, M.C</au><au>Delvalle, D</au><au>d'Hulst, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Starch division and partitioning. A mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2004-10-01</date><risdate>2004</risdate><volume>136</volume><issue>2</issue><spage>3333</spage><epage>3340</epage><pages>3333-3340</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Whereas Glc is stored in small-sized hydrosoluble glycogen particles in archaea, eubacteria, fungi, and animal cells, photosynthetic eukaryotes have resorted to building starch, which is composed of several distinct polysaccharide fractions packed into a highly organized semicrystalline granule. In plants, both the initiation of polysaccharide synthesis and the nucleation mechanism leading to formation of new starch granules are currently not understood. Ostreococcus tauri, a unicellular green alga of the Prasinophyceae family, defines the tiniest eukaryote with one of the smallest genomes. We show that it accumulates a single starch granule at the chloroplast center by using the same pathway as higher plants. At the time of plastid division, we observe elongation of the starch and division into two daughter structures that are partitioned in each newly formed chloroplast. These observations suggest that in this system the information required to initiate crystalline polysaccharide growth of a new granule is contained within the preexisting polysaccharide structure and the design of the plastid division machinery.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>15448195</pmid><doi>10.1104/pp.104.044131</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0041-8557</orcidid><orcidid>https://orcid.org/0000-0001-8026-2120</orcidid><orcidid>https://orcid.org/0000-0002-5556-9099</orcidid><orcidid>https://orcid.org/0000-0002-1499-4240</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2004-10, Vol.136 (2), p.3333-3340
issn 0032-0889
1532-2548
language eng
recordid cdi_hal_primary_oai_HAL_hal_00085499v1
source Oxford Journals Online; JSTOR Archival Journals
subjects adenosine diphosphate
Adenosine Diphosphate Glucose - metabolism
Algae
algae and seaweeds
biochemical pathways
Biochemistry
Biochemistry, Molecular Biology
Biological and medical sciences
carbohydrate metabolism
carbohydrate structure
cell cycle
Cell Cycle - physiology
Chlorophycota
Chlorophyta - cytology
Chlorophyta - metabolism
Chlorophyta - ultrastructure
Chloroplasts - metabolism
Cytoplasmic Granules - metabolism
Enzymes
Evolution
Fundamental and applied biological sciences. Psychology
Genetics, Genomics, and Molecular Evolution
Genome
Genomes
glucose
Glycogen
Life Sciences
Metabolism
Molecular Sequence Data
Ostreococcus tauri
Photosynthesis, respiration. Anabolism, catabolism
Phylogeny
Plant cells
Plant physiology and development
Plants
Plastids
Polysaccharides
Prasinophyceae
Starch - biosynthesis
starch granules
Starch Synthase - genetics
Starch Synthase - metabolism
Starches
title Starch division and partitioning. A mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Starch%20division%20and%20partitioning.%20A%20mechanism%20for%20granule%20propagation%20and%20maintenance%20in%20the%20picophytoplanktonic%20green%20alga%20Ostreococcus%20tauri&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Ral,%20J.P&rft.date=2004-10-01&rft.volume=136&rft.issue=2&rft.spage=3333&rft.epage=3340&rft.pages=3333-3340&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.104.044131&rft_dat=%3Cjstor_hal_p%3E4356682%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-c1d2ef2ad2919cb359b9cf5c92f6055433e5ff66d04241bd7d7672ba783061ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17832731&rft_id=info:pmid/15448195&rft_jstor_id=4356682&rfr_iscdi=true