Loading…
Starch division and partitioning. A mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri
Whereas Glc is stored in small-sized hydrosoluble glycogen particles in archaea, eubacteria, fungi, and animal cells, photosynthetic eukaryotes have resorted to building starch, which is composed of several distinct polysaccharide fractions packed into a highly organized semicrystalline granule. In...
Saved in:
Published in: | Plant physiology (Bethesda) 2004-10, Vol.136 (2), p.3333-3340 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c573t-c1d2ef2ad2919cb359b9cf5c92f6055433e5ff66d04241bd7d7672ba783061ec3 |
---|---|
cites | cdi_FETCH-LOGICAL-c573t-c1d2ef2ad2919cb359b9cf5c92f6055433e5ff66d04241bd7d7672ba783061ec3 |
container_end_page | 3340 |
container_issue | 2 |
container_start_page | 3333 |
container_title | Plant physiology (Bethesda) |
container_volume | 136 |
creator | Ral, J.P Derelle, E Ferraz, C Wattebled, F Farinas, B Corellou, F Buleon, A Slomianny, M.C Delvalle, D d'Hulst, C |
description | Whereas Glc is stored in small-sized hydrosoluble glycogen particles in archaea, eubacteria, fungi, and animal cells, photosynthetic eukaryotes have resorted to building starch, which is composed of several distinct polysaccharide fractions packed into a highly organized semicrystalline granule. In plants, both the initiation of polysaccharide synthesis and the nucleation mechanism leading to formation of new starch granules are currently not understood. Ostreococcus tauri, a unicellular green alga of the Prasinophyceae family, defines the tiniest eukaryote with one of the smallest genomes. We show that it accumulates a single starch granule at the chloroplast center by using the same pathway as higher plants. At the time of plastid division, we observe elongation of the starch and division into two daughter structures that are partitioned in each newly formed chloroplast. These observations suggest that in this system the information required to initiate crystalline polysaccharide growth of a new granule is contained within the preexisting polysaccharide structure and the design of the plastid division machinery. |
doi_str_mv | 10.1104/pp.104.044131 |
format | article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00085499v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4356682</jstor_id><sourcerecordid>4356682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c573t-c1d2ef2ad2919cb359b9cf5c92f6055433e5ff66d04241bd7d7672ba783061ec3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEokvhyA2BLyBxyOLvxMdVRVuklXooPUezjrPrksTBdir1T_CbmVWW9shpbM8zr2f8uijeM7pmjMpv07TGsKZSMsFeFCumBC-5kvXLYkUprmldm7PiTUr3lFJk5OvijCkpa2bUqvhzmyHaA2n9g08-jATGlkwQs8-48-N-TTZkcPYAo08D6UIk-wjj3DsyxTDBHvK_qgH8mN0Io3XEjyQfEPE2TIfHHKYexl8ZBS2WO4cF_R7ITcrRBRusnRPJMEf_tnjVQZ_cu1M8L-4uv_-8uC63N1c_Ljbb0qpK5NKylruOQ8sNM3YnlNkZ2ylreKepUlIIp7pO65ZKLtmurdpKV3wHVS2oZs6K8-LronuAvpmiHyA-NgF8c73ZNsczfKtaSWMeGLJfFhYH_j27lJvBJ-t6HMmFOTVam1pp7Ot_IMPreSWOiuUC2hhSiq57aoHR5uhqM03NMSyuIv_xJDzvBtc-0ycbEfh8AiBZ6Dt0yPr0zGlmhJA1ch8W7j7lEJ_yUiita47pT0u6g9DAPqLE3S3HT0Op0RSbEX8Bi_a-ig</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17832731</pqid></control><display><type>article</type><title>Starch division and partitioning. A mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri</title><source>Oxford Journals Online</source><source>JSTOR Archival Journals</source><creator>Ral, J.P ; Derelle, E ; Ferraz, C ; Wattebled, F ; Farinas, B ; Corellou, F ; Buleon, A ; Slomianny, M.C ; Delvalle, D ; d'Hulst, C</creator><creatorcontrib>Ral, J.P ; Derelle, E ; Ferraz, C ; Wattebled, F ; Farinas, B ; Corellou, F ; Buleon, A ; Slomianny, M.C ; Delvalle, D ; d'Hulst, C</creatorcontrib><description>Whereas Glc is stored in small-sized hydrosoluble glycogen particles in archaea, eubacteria, fungi, and animal cells, photosynthetic eukaryotes have resorted to building starch, which is composed of several distinct polysaccharide fractions packed into a highly organized semicrystalline granule. In plants, both the initiation of polysaccharide synthesis and the nucleation mechanism leading to formation of new starch granules are currently not understood. Ostreococcus tauri, a unicellular green alga of the Prasinophyceae family, defines the tiniest eukaryote with one of the smallest genomes. We show that it accumulates a single starch granule at the chloroplast center by using the same pathway as higher plants. At the time of plastid division, we observe elongation of the starch and division into two daughter structures that are partitioned in each newly formed chloroplast. These observations suggest that in this system the information required to initiate crystalline polysaccharide growth of a new granule is contained within the preexisting polysaccharide structure and the design of the plastid division machinery.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.104.044131</identifier><identifier>PMID: 15448195</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>adenosine diphosphate ; Adenosine Diphosphate Glucose - metabolism ; Algae ; algae and seaweeds ; biochemical pathways ; Biochemistry ; Biochemistry, Molecular Biology ; Biological and medical sciences ; carbohydrate metabolism ; carbohydrate structure ; cell cycle ; Cell Cycle - physiology ; Chlorophycota ; Chlorophyta - cytology ; Chlorophyta - metabolism ; Chlorophyta - ultrastructure ; Chloroplasts - metabolism ; Cytoplasmic Granules - metabolism ; Enzymes ; Evolution ; Fundamental and applied biological sciences. Psychology ; Genetics, Genomics, and Molecular Evolution ; Genome ; Genomes ; glucose ; Glycogen ; Life Sciences ; Metabolism ; Molecular Sequence Data ; Ostreococcus tauri ; Photosynthesis, respiration. Anabolism, catabolism ; Phylogeny ; Plant cells ; Plant physiology and development ; Plants ; Plastids ; Polysaccharides ; Prasinophyceae ; Starch - biosynthesis ; starch granules ; Starch Synthase - genetics ; Starch Synthase - metabolism ; Starches</subject><ispartof>Plant physiology (Bethesda), 2004-10, Vol.136 (2), p.3333-3340</ispartof><rights>Copyright 2004 American Society of Plant Biologists</rights><rights>2004 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c573t-c1d2ef2ad2919cb359b9cf5c92f6055433e5ff66d04241bd7d7672ba783061ec3</citedby><cites>FETCH-LOGICAL-c573t-c1d2ef2ad2919cb359b9cf5c92f6055433e5ff66d04241bd7d7672ba783061ec3</cites><orcidid>0000-0003-0041-8557 ; 0000-0001-8026-2120 ; 0000-0002-5556-9099 ; 0000-0002-1499-4240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4356682$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4356682$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16193348$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15448195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00085499$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ral, J.P</creatorcontrib><creatorcontrib>Derelle, E</creatorcontrib><creatorcontrib>Ferraz, C</creatorcontrib><creatorcontrib>Wattebled, F</creatorcontrib><creatorcontrib>Farinas, B</creatorcontrib><creatorcontrib>Corellou, F</creatorcontrib><creatorcontrib>Buleon, A</creatorcontrib><creatorcontrib>Slomianny, M.C</creatorcontrib><creatorcontrib>Delvalle, D</creatorcontrib><creatorcontrib>d'Hulst, C</creatorcontrib><title>Starch division and partitioning. A mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Whereas Glc is stored in small-sized hydrosoluble glycogen particles in archaea, eubacteria, fungi, and animal cells, photosynthetic eukaryotes have resorted to building starch, which is composed of several distinct polysaccharide fractions packed into a highly organized semicrystalline granule. In plants, both the initiation of polysaccharide synthesis and the nucleation mechanism leading to formation of new starch granules are currently not understood. Ostreococcus tauri, a unicellular green alga of the Prasinophyceae family, defines the tiniest eukaryote with one of the smallest genomes. We show that it accumulates a single starch granule at the chloroplast center by using the same pathway as higher plants. At the time of plastid division, we observe elongation of the starch and division into two daughter structures that are partitioned in each newly formed chloroplast. These observations suggest that in this system the information required to initiate crystalline polysaccharide growth of a new granule is contained within the preexisting polysaccharide structure and the design of the plastid division machinery.</description><subject>adenosine diphosphate</subject><subject>Adenosine Diphosphate Glucose - metabolism</subject><subject>Algae</subject><subject>algae and seaweeds</subject><subject>biochemical pathways</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological and medical sciences</subject><subject>carbohydrate metabolism</subject><subject>carbohydrate structure</subject><subject>cell cycle</subject><subject>Cell Cycle - physiology</subject><subject>Chlorophycota</subject><subject>Chlorophyta - cytology</subject><subject>Chlorophyta - metabolism</subject><subject>Chlorophyta - ultrastructure</subject><subject>Chloroplasts - metabolism</subject><subject>Cytoplasmic Granules - metabolism</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics, Genomics, and Molecular Evolution</subject><subject>Genome</subject><subject>Genomes</subject><subject>glucose</subject><subject>Glycogen</subject><subject>Life Sciences</subject><subject>Metabolism</subject><subject>Molecular Sequence Data</subject><subject>Ostreococcus tauri</subject><subject>Photosynthesis, respiration. Anabolism, catabolism</subject><subject>Phylogeny</subject><subject>Plant cells</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Plastids</subject><subject>Polysaccharides</subject><subject>Prasinophyceae</subject><subject>Starch - biosynthesis</subject><subject>starch granules</subject><subject>Starch Synthase - genetics</subject><subject>Starch Synthase - metabolism</subject><subject>Starches</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkk1v1DAQhiMEokvhyA2BLyBxyOLvxMdVRVuklXooPUezjrPrksTBdir1T_CbmVWW9shpbM8zr2f8uijeM7pmjMpv07TGsKZSMsFeFCumBC-5kvXLYkUprmldm7PiTUr3lFJk5OvijCkpa2bUqvhzmyHaA2n9g08-jATGlkwQs8-48-N-TTZkcPYAo08D6UIk-wjj3DsyxTDBHvK_qgH8mN0Io3XEjyQfEPE2TIfHHKYexl8ZBS2WO4cF_R7ITcrRBRusnRPJMEf_tnjVQZ_cu1M8L-4uv_-8uC63N1c_Ljbb0qpK5NKylruOQ8sNM3YnlNkZ2ylreKepUlIIp7pO65ZKLtmurdpKV3wHVS2oZs6K8-LronuAvpmiHyA-NgF8c73ZNsczfKtaSWMeGLJfFhYH_j27lJvBJ-t6HMmFOTVam1pp7Ot_IMPreSWOiuUC2hhSiq57aoHR5uhqM03NMSyuIv_xJDzvBtc-0ycbEfh8AiBZ6Dt0yPr0zGlmhJA1ch8W7j7lEJ_yUiita47pT0u6g9DAPqLE3S3HT0Op0RSbEX8Bi_a-ig</recordid><startdate>20041001</startdate><enddate>20041001</enddate><creator>Ral, J.P</creator><creator>Derelle, E</creator><creator>Ferraz, C</creator><creator>Wattebled, F</creator><creator>Farinas, B</creator><creator>Corellou, F</creator><creator>Buleon, A</creator><creator>Slomianny, M.C</creator><creator>Delvalle, D</creator><creator>d'Hulst, C</creator><general>American Society of Plant Biologists</general><general>American Society of Plant Physiologists</general><general>Oxford University Press ; American Society of Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0041-8557</orcidid><orcidid>https://orcid.org/0000-0001-8026-2120</orcidid><orcidid>https://orcid.org/0000-0002-5556-9099</orcidid><orcidid>https://orcid.org/0000-0002-1499-4240</orcidid></search><sort><creationdate>20041001</creationdate><title>Starch division and partitioning. A mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri</title><author>Ral, J.P ; Derelle, E ; Ferraz, C ; Wattebled, F ; Farinas, B ; Corellou, F ; Buleon, A ; Slomianny, M.C ; Delvalle, D ; d'Hulst, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c573t-c1d2ef2ad2919cb359b9cf5c92f6055433e5ff66d04241bd7d7672ba783061ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>adenosine diphosphate</topic><topic>Adenosine Diphosphate Glucose - metabolism</topic><topic>Algae</topic><topic>algae and seaweeds</topic><topic>biochemical pathways</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological and medical sciences</topic><topic>carbohydrate metabolism</topic><topic>carbohydrate structure</topic><topic>cell cycle</topic><topic>Cell Cycle - physiology</topic><topic>Chlorophycota</topic><topic>Chlorophyta - cytology</topic><topic>Chlorophyta - metabolism</topic><topic>Chlorophyta - ultrastructure</topic><topic>Chloroplasts - metabolism</topic><topic>Cytoplasmic Granules - metabolism</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics, Genomics, and Molecular Evolution</topic><topic>Genome</topic><topic>Genomes</topic><topic>glucose</topic><topic>Glycogen</topic><topic>Life Sciences</topic><topic>Metabolism</topic><topic>Molecular Sequence Data</topic><topic>Ostreococcus tauri</topic><topic>Photosynthesis, respiration. Anabolism, catabolism</topic><topic>Phylogeny</topic><topic>Plant cells</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Plastids</topic><topic>Polysaccharides</topic><topic>Prasinophyceae</topic><topic>Starch - biosynthesis</topic><topic>starch granules</topic><topic>Starch Synthase - genetics</topic><topic>Starch Synthase - metabolism</topic><topic>Starches</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ral, J.P</creatorcontrib><creatorcontrib>Derelle, E</creatorcontrib><creatorcontrib>Ferraz, C</creatorcontrib><creatorcontrib>Wattebled, F</creatorcontrib><creatorcontrib>Farinas, B</creatorcontrib><creatorcontrib>Corellou, F</creatorcontrib><creatorcontrib>Buleon, A</creatorcontrib><creatorcontrib>Slomianny, M.C</creatorcontrib><creatorcontrib>Delvalle, D</creatorcontrib><creatorcontrib>d'Hulst, C</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ral, J.P</au><au>Derelle, E</au><au>Ferraz, C</au><au>Wattebled, F</au><au>Farinas, B</au><au>Corellou, F</au><au>Buleon, A</au><au>Slomianny, M.C</au><au>Delvalle, D</au><au>d'Hulst, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Starch division and partitioning. A mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2004-10-01</date><risdate>2004</risdate><volume>136</volume><issue>2</issue><spage>3333</spage><epage>3340</epage><pages>3333-3340</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Whereas Glc is stored in small-sized hydrosoluble glycogen particles in archaea, eubacteria, fungi, and animal cells, photosynthetic eukaryotes have resorted to building starch, which is composed of several distinct polysaccharide fractions packed into a highly organized semicrystalline granule. In plants, both the initiation of polysaccharide synthesis and the nucleation mechanism leading to formation of new starch granules are currently not understood. Ostreococcus tauri, a unicellular green alga of the Prasinophyceae family, defines the tiniest eukaryote with one of the smallest genomes. We show that it accumulates a single starch granule at the chloroplast center by using the same pathway as higher plants. At the time of plastid division, we observe elongation of the starch and division into two daughter structures that are partitioned in each newly formed chloroplast. These observations suggest that in this system the information required to initiate crystalline polysaccharide growth of a new granule is contained within the preexisting polysaccharide structure and the design of the plastid division machinery.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>15448195</pmid><doi>10.1104/pp.104.044131</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0041-8557</orcidid><orcidid>https://orcid.org/0000-0001-8026-2120</orcidid><orcidid>https://orcid.org/0000-0002-5556-9099</orcidid><orcidid>https://orcid.org/0000-0002-1499-4240</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2004-10, Vol.136 (2), p.3333-3340 |
issn | 0032-0889 1532-2548 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00085499v1 |
source | Oxford Journals Online; JSTOR Archival Journals |
subjects | adenosine diphosphate Adenosine Diphosphate Glucose - metabolism Algae algae and seaweeds biochemical pathways Biochemistry Biochemistry, Molecular Biology Biological and medical sciences carbohydrate metabolism carbohydrate structure cell cycle Cell Cycle - physiology Chlorophycota Chlorophyta - cytology Chlorophyta - metabolism Chlorophyta - ultrastructure Chloroplasts - metabolism Cytoplasmic Granules - metabolism Enzymes Evolution Fundamental and applied biological sciences. Psychology Genetics, Genomics, and Molecular Evolution Genome Genomes glucose Glycogen Life Sciences Metabolism Molecular Sequence Data Ostreococcus tauri Photosynthesis, respiration. Anabolism, catabolism Phylogeny Plant cells Plant physiology and development Plants Plastids Polysaccharides Prasinophyceae Starch - biosynthesis starch granules Starch Synthase - genetics Starch Synthase - metabolism Starches |
title | Starch division and partitioning. A mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T09%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Starch%20division%20and%20partitioning.%20A%20mechanism%20for%20granule%20propagation%20and%20maintenance%20in%20the%20picophytoplanktonic%20green%20alga%20Ostreococcus%20tauri&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Ral,%20J.P&rft.date=2004-10-01&rft.volume=136&rft.issue=2&rft.spage=3333&rft.epage=3340&rft.pages=3333-3340&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.104.044131&rft_dat=%3Cjstor_hal_p%3E4356682%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c573t-c1d2ef2ad2919cb359b9cf5c92f6055433e5ff66d04241bd7d7672ba783061ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17832731&rft_id=info:pmid/15448195&rft_jstor_id=4356682&rfr_iscdi=true |