Loading…

Characterization of Brachyury genes in the dogfish S. canicula and the lamprey L. fluviatilis. Insights into gastrulation in a chondrichthyan

In order to gain insights into the evolution of gastrulation mechanisms among vertebrates, we have characterized a Brachyury-related gene in a lamprey, Lampetra fluviatilis, and in a chondrichthyan, Scyliorhinus canicula. These two genes, respectively termed LfT and ScT, share with their osteichthya...

Full description

Saved in:
Bibliographic Details
Published in:Developmental biology 2003-11, Vol.263 (2), p.296-307
Main Authors: Sauka-Spengler, Tatjana, Baratte, Blandine, Lepage, Mario, Mazan, Sylvie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to gain insights into the evolution of gastrulation mechanisms among vertebrates, we have characterized a Brachyury-related gene in a lamprey, Lampetra fluviatilis, and in a chondrichthyan, Scyliorhinus canicula. These two genes, respectively termed LfT and ScT, share with their osteichthyan counterparts prominent expression sites in the developing notochord, the tailbud, but also a transient expression in the prechordal plate, which is likely to be ancestral among vertebrates. In addition, the lamprey LfT gene is transcribed in the endoderm of the pharyngeal arches and the epiphysis, two expression sites that have not been reported thus far in gnathostomes, and, as in the chick, in the differentiating nephrotomes. Since Brachyury expression in nascent mesoderm and endoderm is highly conserved among vertebrates as well as cephalochordates, we have used this marker to identify these cell populations during gastrulation in the dogfish. The results suggest that these cells are initially present over the whole margin of the blastoderm and are displaced during gastrulation to its posterior part, which may correspond to the site of mesoderm and endoderm internalization. These data provide the first molecular characterization of gastrulation in a chondrichthyan. They indicate that gastrulation in the dogfish and in some amniotes shares striking similarities despite the phylogenetic distance between these species. This supports the hypothesis that the extensively divergent morphologies of gastrulae among vertebrates largely result from adaptations to the presence of yolk.
ISSN:0012-1606
1095-564X
DOI:10.1016/j.ydbio.2003.07.009