Loading…

Computation and stability of limit cycles in hybrid systems

In this note, a practical way to compute limit cycles in context of hybrid systems is investigated. As in many hybrid applications the steady state is depicted by a limit cycle, control design and stability analysis of such hybrid systems require the knowledge of this periodic motion. Analytical exp...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis 2006-01, Vol.64 (2), p.352-367
Main Authors: Flieller, D., Riedinger, P., Louis, J.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c401t-7d3b9c55bdf24f19903f230e6ab17b2d72db01d1a62fa66e22eee4bc7d92c6823
cites cdi_FETCH-LOGICAL-c401t-7d3b9c55bdf24f19903f230e6ab17b2d72db01d1a62fa66e22eee4bc7d92c6823
container_end_page 367
container_issue 2
container_start_page 352
container_title Nonlinear analysis
container_volume 64
creator Flieller, D.
Riedinger, P.
Louis, J.P.
description In this note, a practical way to compute limit cycles in context of hybrid systems is investigated. As in many hybrid applications the steady state is depicted by a limit cycle, control design and stability analysis of such hybrid systems require the knowledge of this periodic motion. Analytical expression of this cycle is generally an impossible task due to the complexity of the dynamic. A fast algorithm is proposed and used to determine these cycles in the case where the switching sequence is known. The proposed method is based on the rule played by the switching times in the sensitivity functions. The stability of the cycle is also deduced at the end of the run thanks to the computation of the Jacobian matrix of the linearized sampled time systems. This work can be used as a starting point for sensitivity analysis, measurement of attraction area and control design.
doi_str_mv 10.1016/j.na.2005.06.054
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00119807v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X05007030</els_id><sourcerecordid>29152203</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-7d3b9c55bdf24f19903f230e6ab17b2d72db01d1a62fa66e22eee4bc7d92c6823</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKd3jz0JHlq_JE266mkMdcLAi4K3kCZfWUZ_zCQb9L-3o-LN0wcfz_PC-xJySyGjQOXDLut0xgBEBjIDkZ-RGV0UPBWMinMyAy5ZKnL5dUmuQtgBAC24nJGnVd_uD1FH13eJ7mwSoq5c4-KQ9HXSuNbFxAymwZC4LtkOlXcjM4SIbbgmF7VuAt783jn5fHn-WK3Tzfvr22q5SU0ONKaF5VVphKhszfKaliXwmnFAqStaVMwWzFZALdWS1VpKZAwR88oUtmRGLhifk_spd6sbtfeu1X5QvXZqvdyo028sQ8sFFEc6sncTu_f99wFDVK0LBptGd9gfgmIlFYwBH0GYQOP7EDzWf8kU1GlRtVOdVqdFFUg1Ljoqj5OCY9mjQ6-CcdgZtM6jicr27n_5Byp6fMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29152203</pqid></control><display><type>article</type><title>Computation and stability of limit cycles in hybrid systems</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Flieller, D. ; Riedinger, P. ; Louis, J.P.</creator><creatorcontrib>Flieller, D. ; Riedinger, P. ; Louis, J.P.</creatorcontrib><description>In this note, a practical way to compute limit cycles in context of hybrid systems is investigated. As in many hybrid applications the steady state is depicted by a limit cycle, control design and stability analysis of such hybrid systems require the knowledge of this periodic motion. Analytical expression of this cycle is generally an impossible task due to the complexity of the dynamic. A fast algorithm is proposed and used to determine these cycles in the case where the switching sequence is known. The proposed method is based on the rule played by the switching times in the sensitivity functions. The stability of the cycle is also deduced at the end of the run thanks to the computation of the Jacobian matrix of the linearized sampled time systems. This work can be used as a starting point for sensitivity analysis, measurement of attraction area and control design.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2005.06.054</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automatic ; Condensed Matter ; Electric power ; Electromagnetism ; Engineering Sciences ; Hybrid systems ; Limit cycles ; Physics ; Power converters ; Sensitivity functions ; Stability ; Superconductivity</subject><ispartof>Nonlinear analysis, 2006-01, Vol.64 (2), p.352-367</ispartof><rights>2005</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-7d3b9c55bdf24f19903f230e6ab17b2d72db01d1a62fa66e22eee4bc7d92c6823</citedby><cites>FETCH-LOGICAL-c401t-7d3b9c55bdf24f19903f230e6ab17b2d72db01d1a62fa66e22eee4bc7d92c6823</cites><orcidid>0000-0002-8221-4736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X05007030$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3551,27901,27902,45978</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00119807$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Flieller, D.</creatorcontrib><creatorcontrib>Riedinger, P.</creatorcontrib><creatorcontrib>Louis, J.P.</creatorcontrib><title>Computation and stability of limit cycles in hybrid systems</title><title>Nonlinear analysis</title><description>In this note, a practical way to compute limit cycles in context of hybrid systems is investigated. As in many hybrid applications the steady state is depicted by a limit cycle, control design and stability analysis of such hybrid systems require the knowledge of this periodic motion. Analytical expression of this cycle is generally an impossible task due to the complexity of the dynamic. A fast algorithm is proposed and used to determine these cycles in the case where the switching sequence is known. The proposed method is based on the rule played by the switching times in the sensitivity functions. The stability of the cycle is also deduced at the end of the run thanks to the computation of the Jacobian matrix of the linearized sampled time systems. This work can be used as a starting point for sensitivity analysis, measurement of attraction area and control design.</description><subject>Automatic</subject><subject>Condensed Matter</subject><subject>Electric power</subject><subject>Electromagnetism</subject><subject>Engineering Sciences</subject><subject>Hybrid systems</subject><subject>Limit cycles</subject><subject>Physics</subject><subject>Power converters</subject><subject>Sensitivity functions</subject><subject>Stability</subject><subject>Superconductivity</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAYhoMoOKd3jz0JHlq_JE266mkMdcLAi4K3kCZfWUZ_zCQb9L-3o-LN0wcfz_PC-xJySyGjQOXDLut0xgBEBjIDkZ-RGV0UPBWMinMyAy5ZKnL5dUmuQtgBAC24nJGnVd_uD1FH13eJ7mwSoq5c4-KQ9HXSuNbFxAymwZC4LtkOlXcjM4SIbbgmF7VuAt783jn5fHn-WK3Tzfvr22q5SU0ONKaF5VVphKhszfKaliXwmnFAqStaVMwWzFZALdWS1VpKZAwR88oUtmRGLhifk_spd6sbtfeu1X5QvXZqvdyo028sQ8sFFEc6sncTu_f99wFDVK0LBptGd9gfgmIlFYwBH0GYQOP7EDzWf8kU1GlRtVOdVqdFFUg1Ljoqj5OCY9mjQ6-CcdgZtM6jicr27n_5Byp6fMw</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Flieller, D.</creator><creator>Riedinger, P.</creator><creator>Louis, J.P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8221-4736</orcidid></search><sort><creationdate>20060101</creationdate><title>Computation and stability of limit cycles in hybrid systems</title><author>Flieller, D. ; Riedinger, P. ; Louis, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-7d3b9c55bdf24f19903f230e6ab17b2d72db01d1a62fa66e22eee4bc7d92c6823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Automatic</topic><topic>Condensed Matter</topic><topic>Electric power</topic><topic>Electromagnetism</topic><topic>Engineering Sciences</topic><topic>Hybrid systems</topic><topic>Limit cycles</topic><topic>Physics</topic><topic>Power converters</topic><topic>Sensitivity functions</topic><topic>Stability</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Flieller, D.</creatorcontrib><creatorcontrib>Riedinger, P.</creatorcontrib><creatorcontrib>Louis, J.P.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Flieller, D.</au><au>Riedinger, P.</au><au>Louis, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation and stability of limit cycles in hybrid systems</atitle><jtitle>Nonlinear analysis</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>64</volume><issue>2</issue><spage>352</spage><epage>367</epage><pages>352-367</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>In this note, a practical way to compute limit cycles in context of hybrid systems is investigated. As in many hybrid applications the steady state is depicted by a limit cycle, control design and stability analysis of such hybrid systems require the knowledge of this periodic motion. Analytical expression of this cycle is generally an impossible task due to the complexity of the dynamic. A fast algorithm is proposed and used to determine these cycles in the case where the switching sequence is known. The proposed method is based on the rule played by the switching times in the sensitivity functions. The stability of the cycle is also deduced at the end of the run thanks to the computation of the Jacobian matrix of the linearized sampled time systems. This work can be used as a starting point for sensitivity analysis, measurement of attraction area and control design.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2005.06.054</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8221-4736</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2006-01, Vol.64 (2), p.352-367
issn 0362-546X
1873-5215
language eng
recordid cdi_hal_primary_oai_HAL_hal_00119807v1
source ScienceDirect Freedom Collection; Backfile Package - Mathematics (Legacy) [YMT]
subjects Automatic
Condensed Matter
Electric power
Electromagnetism
Engineering Sciences
Hybrid systems
Limit cycles
Physics
Power converters
Sensitivity functions
Stability
Superconductivity
title Computation and stability of limit cycles in hybrid systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A00%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20and%20stability%20of%20limit%20cycles%20in%20hybrid%20systems&rft.jtitle=Nonlinear%20analysis&rft.au=Flieller,%20D.&rft.date=2006-01-01&rft.volume=64&rft.issue=2&rft.spage=352&rft.epage=367&rft.pages=352-367&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2005.06.054&rft_dat=%3Cproquest_hal_p%3E29152203%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-7d3b9c55bdf24f19903f230e6ab17b2d72db01d1a62fa66e22eee4bc7d92c6823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=29152203&rft_id=info:pmid/&rfr_iscdi=true