Loading…

Rainfall-runoff model usingan artificial neural network approach

The use of artificial neural networks (ANNs) is becoming increasingly common in the analysis of hydrology and water resources problems. In this research, an ANN was developed and used to model the rainfall-runoff relationship, in a catchment located in a semiarid climate in Morocco. The multilayer p...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical and computer modelling 2004, Vol.40 (7-8), p.839-846
Main Authors: Riad, Souad, Mania, Jacky, Bouchaou, L., Najjar, Y.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 846
container_issue
container_start_page 839
container_title Mathematical and computer modelling
container_volume 40 (7-8)
creator Riad, Souad
Mania, Jacky
Bouchaou, L.
Najjar, Y.
description The use of artificial neural networks (ANNs) is becoming increasingly common in the analysis of hydrology and water resources problems. In this research, an ANN was developed and used to model the rainfall-runoff relationship, in a catchment located in a semiarid climate in Morocco. The multilayer perceptron (MLP) neural network was chosen for use in the current study. The results and comparative study indicate that the artificial neural network method is more suitable to predict river runoff than classical regression model.
format article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00138173v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00138173v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_00138173v13</originalsourceid><addsrcrecordid>eNqVi8sKwjAQAHNQsD7-IVcPhQ2lpL0povTgSbyHRRu7miZl0yr-vQ_8AU8Dw8xIJFCUeaqV1hMxjfEKAHkJRSJWByRv0bmUBx-slW04104OkfwFvUTuydKJ0ElfD_xF_wh8k9h1HPDUzMX4vcd68eNMLHfb46ZKG3SmY2qRnyYgmWq9Nx8HoLJC6eyusn_aF_DRPPo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rainfall-runoff model usingan artificial neural network approach</title><source>Elsevier</source><creator>Riad, Souad ; Mania, Jacky ; Bouchaou, L. ; Najjar, Y.</creator><creatorcontrib>Riad, Souad ; Mania, Jacky ; Bouchaou, L. ; Najjar, Y.</creatorcontrib><description>The use of artificial neural networks (ANNs) is becoming increasingly common in the analysis of hydrology and water resources problems. In this research, an ANN was developed and used to model the rainfall-runoff relationship, in a catchment located in a semiarid climate in Morocco. The multilayer perceptron (MLP) neural network was chosen for use in the current study. The results and comparative study indicate that the artificial neural network method is more suitable to predict river runoff than classical regression model.</description><identifier>ISSN: 0895-7177</identifier><language>eng</language><publisher>Elsevier</publisher><ispartof>Mathematical and computer modelling, 2004, Vol.40 (7-8), p.839-846</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4022</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00138173$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Riad, Souad</creatorcontrib><creatorcontrib>Mania, Jacky</creatorcontrib><creatorcontrib>Bouchaou, L.</creatorcontrib><creatorcontrib>Najjar, Y.</creatorcontrib><title>Rainfall-runoff model usingan artificial neural network approach</title><title>Mathematical and computer modelling</title><description>The use of artificial neural networks (ANNs) is becoming increasingly common in the analysis of hydrology and water resources problems. In this research, an ANN was developed and used to model the rainfall-runoff relationship, in a catchment located in a semiarid climate in Morocco. The multilayer perceptron (MLP) neural network was chosen for use in the current study. The results and comparative study indicate that the artificial neural network method is more suitable to predict river runoff than classical regression model.</description><issn>0895-7177</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqVi8sKwjAQAHNQsD7-IVcPhQ2lpL0povTgSbyHRRu7miZl0yr-vQ_8AU8Dw8xIJFCUeaqV1hMxjfEKAHkJRSJWByRv0bmUBx-slW04104OkfwFvUTuydKJ0ElfD_xF_wh8k9h1HPDUzMX4vcd68eNMLHfb46ZKG3SmY2qRnyYgmWq9Nx8HoLJC6eyusn_aF_DRPPo</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Riad, Souad</creator><creator>Mania, Jacky</creator><creator>Bouchaou, L.</creator><creator>Najjar, Y.</creator><general>Elsevier</general><scope>1XC</scope></search><sort><creationdate>2004</creationdate><title>Rainfall-runoff model usingan artificial neural network approach</title><author>Riad, Souad ; Mania, Jacky ; Bouchaou, L. ; Najjar, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_00138173v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riad, Souad</creatorcontrib><creatorcontrib>Mania, Jacky</creatorcontrib><creatorcontrib>Bouchaou, L.</creatorcontrib><creatorcontrib>Najjar, Y.</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Mathematical and computer modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riad, Souad</au><au>Mania, Jacky</au><au>Bouchaou, L.</au><au>Najjar, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rainfall-runoff model usingan artificial neural network approach</atitle><jtitle>Mathematical and computer modelling</jtitle><date>2004</date><risdate>2004</risdate><volume>40 (7-8)</volume><spage>839</spage><epage>846</epage><pages>839-846</pages><issn>0895-7177</issn><abstract>The use of artificial neural networks (ANNs) is becoming increasingly common in the analysis of hydrology and water resources problems. In this research, an ANN was developed and used to model the rainfall-runoff relationship, in a catchment located in a semiarid climate in Morocco. The multilayer perceptron (MLP) neural network was chosen for use in the current study. The results and comparative study indicate that the artificial neural network method is more suitable to predict river runoff than classical regression model.</abstract><pub>Elsevier</pub></addata></record>
fulltext fulltext
identifier ISSN: 0895-7177
ispartof Mathematical and computer modelling, 2004, Vol.40 (7-8), p.839-846
issn 0895-7177
language eng
recordid cdi_hal_primary_oai_HAL_hal_00138173v1
source Elsevier
title Rainfall-runoff model usingan artificial neural network approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rainfall-runoff%20model%20usingan%20artificial%20neural%20network%20approach&rft.jtitle=Mathematical%20and%20computer%20modelling&rft.au=Riad,%20Souad&rft.date=2004&rft.volume=40%20(7-8)&rft.spage=839&rft.epage=846&rft.pages=839-846&rft.issn=0895-7177&rft_id=info:doi/&rft_dat=%3Chal%3Eoai_HAL_hal_00138173v1%3C/hal%3E%3Cgrp_id%3Ecdi_FETCH-hal_primary_oai_HAL_hal_00138173v13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true