Loading…
A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media
One of the more advanced approaches for simulating groundwater flow in karstic and fractured porous media is the combination of a linear and a nonlinear model. The paper presents an attempt to determine outflow influencing parameters in order to simulate aquifer outflow. Our approach in this study i...
Saved in:
Published in: | Mathematical and computer modelling 2003-05, Vol.37 (9), p.1047-1061 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c449t-c54633e3e11eba2f17418f5a61dd9d6e8a69a1df889488e274bbfa751dd809863 |
---|---|
cites | cdi_FETCH-LOGICAL-c449t-c54633e3e11eba2f17418f5a61dd9d6e8a69a1df889488e274bbfa751dd809863 |
container_end_page | 1061 |
container_issue | 9 |
container_start_page | 1047 |
container_title | Mathematical and computer modelling |
container_volume | 37 |
creator | Lallahem, S. Mania, J. |
description | One of the more advanced approaches for simulating groundwater flow in karstic and fractured porous media is the combination of a linear and a nonlinear model. The paper presents an attempt to determine outflow influencing parameters in order to simulate aquifer outflow. Our approach in this study is to create a productive interaction system between expert, mathematical model, MERO, and artificial neural networks (ANNs). The proposed method is especially suitable for the problem of large-scale and long-term simulation. In the present project, the first objective is to determine aquifer outflow influencing parameters by the use of MERO model, which gave a good results in a fissured and chalky media, and then introduce these parameters in neural network (NN). To determine outflow influencing parameters, we propose to test the NN under fourth different external input scenarios. The second objective is to investigate the effect of temporal information by taking current and past data sets. The good found results reveal the merit of ANNs-MERO combination and specifically multilayer perceptron (MLP) models. This methodology provided that the network with lower, lag and number hidden layer, consistently produced better performance. |
doi_str_mv | 10.1016/S0895-7177(03)00117-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00139302v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895717703001171</els_id><sourcerecordid>27901114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-c54633e3e11eba2f17418f5a61dd9d6e8a69a1df889488e274bbfa751dd809863</originalsourceid><addsrcrecordid>eNqFkMFuFSEUhifGJl5bH8GEjcYuRmFgBnBjbppqTW7iQl2Tc5mDRRm4wkyrb1-mt6lLVyeBj_8_fE3zktG3jLLh3VeqdN9KJuUbys8pZUy27EmzYUp2rRZSP202j8iz5nkpPymlvaZq09gtiSkGHxEyyeCjgxDavMTkHJnSiIEsxccfJOKSIdQx36b8i8xor6P_veB7gn9gOgQkPhKXwc5LxpEcUk5LIROOHs6ak5pa8MXDPG2-f7z8dnHV7r58-nyx3bVWCD23thcD58iRMdxD55gUTLkeBjaOehxQwaCBjU4pLZTCTor93oHs67WiWg38tDk_5l5DMIfsJ8h_TQJvrrY7s55VNVxz2t2wyr4-soec6i_KbCZfLIYAEevippO6emSigv0RtDmVktE9JjNqVv3mXr9Z3RrKzb1-sxa8eiiAYiFUM9H68u-xUKLTfM3_cOSwmrnxmE2xHqOt4jLa2YzJ_6fpDqaQme8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27901114</pqid></control><display><type>article</type><title>A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media</title><source>ScienceDirect Freedom Collection</source><creator>Lallahem, S. ; Mania, J.</creator><creatorcontrib>Lallahem, S. ; Mania, J.</creatorcontrib><description>One of the more advanced approaches for simulating groundwater flow in karstic and fractured porous media is the combination of a linear and a nonlinear model. The paper presents an attempt to determine outflow influencing parameters in order to simulate aquifer outflow. Our approach in this study is to create a productive interaction system between expert, mathematical model, MERO, and artificial neural networks (ANNs). The proposed method is especially suitable for the problem of large-scale and long-term simulation. In the present project, the first objective is to determine aquifer outflow influencing parameters by the use of MERO model, which gave a good results in a fissured and chalky media, and then introduce these parameters in neural network (NN). To determine outflow influencing parameters, we propose to test the NN under fourth different external input scenarios. The second objective is to investigate the effect of temporal information by taking current and past data sets. The good found results reveal the merit of ANNs-MERO combination and specifically multilayer perceptron (MLP) models. This methodology provided that the network with lower, lag and number hidden layer, consistently produced better performance.</description><identifier>ISSN: 0895-7177</identifier><identifier>EISSN: 1872-9479</identifier><identifier>DOI: 10.1016/S0895-7177(03)00117-1</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial intelligence ; Artificial neural networks ; Chalk media ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Flows through porous media ; Fluid dynamics ; Fractured media ; Fundamental areas of phenomenology (including applications) ; Groundwater flow ; Karst aquifer ; Mathematical analysis ; Mathematics ; Nonhomogeneous flows ; Partial differential equations ; Physics ; Sciences and techniques of general use</subject><ispartof>Mathematical and computer modelling, 2003-05, Vol.37 (9), p.1047-1061</ispartof><rights>2003</rights><rights>2003 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-c54633e3e11eba2f17418f5a61dd9d6e8a69a1df889488e274bbfa751dd809863</citedby><cites>FETCH-LOGICAL-c449t-c54633e3e11eba2f17418f5a61dd9d6e8a69a1df889488e274bbfa751dd809863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14842934$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00139302$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lallahem, S.</creatorcontrib><creatorcontrib>Mania, J.</creatorcontrib><title>A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media</title><title>Mathematical and computer modelling</title><description>One of the more advanced approaches for simulating groundwater flow in karstic and fractured porous media is the combination of a linear and a nonlinear model. The paper presents an attempt to determine outflow influencing parameters in order to simulate aquifer outflow. Our approach in this study is to create a productive interaction system between expert, mathematical model, MERO, and artificial neural networks (ANNs). The proposed method is especially suitable for the problem of large-scale and long-term simulation. In the present project, the first objective is to determine aquifer outflow influencing parameters by the use of MERO model, which gave a good results in a fissured and chalky media, and then introduce these parameters in neural network (NN). To determine outflow influencing parameters, we propose to test the NN under fourth different external input scenarios. The second objective is to investigate the effect of temporal information by taking current and past data sets. The good found results reveal the merit of ANNs-MERO combination and specifically multilayer perceptron (MLP) models. This methodology provided that the network with lower, lag and number hidden layer, consistently produced better performance.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Chalk media</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Flows through porous media</subject><subject>Fluid dynamics</subject><subject>Fractured media</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Groundwater flow</subject><subject>Karst aquifer</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonhomogeneous flows</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>0895-7177</issn><issn>1872-9479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkMFuFSEUhifGJl5bH8GEjcYuRmFgBnBjbppqTW7iQl2Tc5mDRRm4wkyrb1-mt6lLVyeBj_8_fE3zktG3jLLh3VeqdN9KJuUbys8pZUy27EmzYUp2rRZSP202j8iz5nkpPymlvaZq09gtiSkGHxEyyeCjgxDavMTkHJnSiIEsxccfJOKSIdQx36b8i8xor6P_veB7gn9gOgQkPhKXwc5LxpEcUk5LIROOHs6ak5pa8MXDPG2-f7z8dnHV7r58-nyx3bVWCD23thcD58iRMdxD55gUTLkeBjaOehxQwaCBjU4pLZTCTor93oHs67WiWg38tDk_5l5DMIfsJ8h_TQJvrrY7s55VNVxz2t2wyr4-soec6i_KbCZfLIYAEevippO6emSigv0RtDmVktE9JjNqVv3mXr9Z3RrKzb1-sxa8eiiAYiFUM9H68u-xUKLTfM3_cOSwmrnxmE2xHqOt4jLa2YzJ_6fpDqaQme8</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Lallahem, S.</creator><creator>Mania, J.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>20030501</creationdate><title>A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media</title><author>Lallahem, S. ; Mania, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-c54633e3e11eba2f17418f5a61dd9d6e8a69a1df889488e274bbfa751dd809863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Chalk media</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Flows through porous media</topic><topic>Fluid dynamics</topic><topic>Fractured media</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Groundwater flow</topic><topic>Karst aquifer</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonhomogeneous flows</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lallahem, S.</creatorcontrib><creatorcontrib>Mania, J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Mathematical and computer modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lallahem, S.</au><au>Mania, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media</atitle><jtitle>Mathematical and computer modelling</jtitle><date>2003-05-01</date><risdate>2003</risdate><volume>37</volume><issue>9</issue><spage>1047</spage><epage>1061</epage><pages>1047-1061</pages><issn>0895-7177</issn><eissn>1872-9479</eissn><abstract>One of the more advanced approaches for simulating groundwater flow in karstic and fractured porous media is the combination of a linear and a nonlinear model. The paper presents an attempt to determine outflow influencing parameters in order to simulate aquifer outflow. Our approach in this study is to create a productive interaction system between expert, mathematical model, MERO, and artificial neural networks (ANNs). The proposed method is especially suitable for the problem of large-scale and long-term simulation. In the present project, the first objective is to determine aquifer outflow influencing parameters by the use of MERO model, which gave a good results in a fissured and chalky media, and then introduce these parameters in neural network (NN). To determine outflow influencing parameters, we propose to test the NN under fourth different external input scenarios. The second objective is to investigate the effect of temporal information by taking current and past data sets. The good found results reveal the merit of ANNs-MERO combination and specifically multilayer perceptron (MLP) models. This methodology provided that the network with lower, lag and number hidden layer, consistently produced better performance.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0895-7177(03)00117-1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0895-7177 |
ispartof | Mathematical and computer modelling, 2003-05, Vol.37 (9), p.1047-1061 |
issn | 0895-7177 1872-9479 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00139302v1 |
source | ScienceDirect Freedom Collection |
subjects | Applied sciences Artificial intelligence Artificial neural networks Chalk media Computer science control theory systems Connectionism. Neural networks Exact sciences and technology Flows through porous media Fluid dynamics Fractured media Fundamental areas of phenomenology (including applications) Groundwater flow Karst aquifer Mathematical analysis Mathematics Nonhomogeneous flows Partial differential equations Physics Sciences and techniques of general use |
title | A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nonlinear%20rainfall-runoff%20model%20using%20neural%20network%20technique:%20example%20in%20fractured%20porous%20media&rft.jtitle=Mathematical%20and%20computer%20modelling&rft.au=Lallahem,%20S.&rft.date=2003-05-01&rft.volume=37&rft.issue=9&rft.spage=1047&rft.epage=1061&rft.pages=1047-1061&rft.issn=0895-7177&rft.eissn=1872-9479&rft_id=info:doi/10.1016/S0895-7177(03)00117-1&rft_dat=%3Cproquest_hal_p%3E27901114%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-c54633e3e11eba2f17418f5a61dd9d6e8a69a1df889488e274bbfa751dd809863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27901114&rft_id=info:pmid/&rfr_iscdi=true |