Loading…

A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media

One of the more advanced approaches for simulating groundwater flow in karstic and fractured porous media is the combination of a linear and a nonlinear model. The paper presents an attempt to determine outflow influencing parameters in order to simulate aquifer outflow. Our approach in this study i...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical and computer modelling 2003-05, Vol.37 (9), p.1047-1061
Main Authors: Lallahem, S., Mania, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-c54633e3e11eba2f17418f5a61dd9d6e8a69a1df889488e274bbfa751dd809863
cites cdi_FETCH-LOGICAL-c449t-c54633e3e11eba2f17418f5a61dd9d6e8a69a1df889488e274bbfa751dd809863
container_end_page 1061
container_issue 9
container_start_page 1047
container_title Mathematical and computer modelling
container_volume 37
creator Lallahem, S.
Mania, J.
description One of the more advanced approaches for simulating groundwater flow in karstic and fractured porous media is the combination of a linear and a nonlinear model. The paper presents an attempt to determine outflow influencing parameters in order to simulate aquifer outflow. Our approach in this study is to create a productive interaction system between expert, mathematical model, MERO, and artificial neural networks (ANNs). The proposed method is especially suitable for the problem of large-scale and long-term simulation. In the present project, the first objective is to determine aquifer outflow influencing parameters by the use of MERO model, which gave a good results in a fissured and chalky media, and then introduce these parameters in neural network (NN). To determine outflow influencing parameters, we propose to test the NN under fourth different external input scenarios. The second objective is to investigate the effect of temporal information by taking current and past data sets. The good found results reveal the merit of ANNs-MERO combination and specifically multilayer perceptron (MLP) models. This methodology provided that the network with lower, lag and number hidden layer, consistently produced better performance.
doi_str_mv 10.1016/S0895-7177(03)00117-1
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00139302v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0895717703001171</els_id><sourcerecordid>27901114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-c54633e3e11eba2f17418f5a61dd9d6e8a69a1df889488e274bbfa751dd809863</originalsourceid><addsrcrecordid>eNqFkMFuFSEUhifGJl5bH8GEjcYuRmFgBnBjbppqTW7iQl2Tc5mDRRm4wkyrb1-mt6lLVyeBj_8_fE3zktG3jLLh3VeqdN9KJuUbys8pZUy27EmzYUp2rRZSP202j8iz5nkpPymlvaZq09gtiSkGHxEyyeCjgxDavMTkHJnSiIEsxccfJOKSIdQx36b8i8xor6P_veB7gn9gOgQkPhKXwc5LxpEcUk5LIROOHs6ak5pa8MXDPG2-f7z8dnHV7r58-nyx3bVWCD23thcD58iRMdxD55gUTLkeBjaOehxQwaCBjU4pLZTCTor93oHs67WiWg38tDk_5l5DMIfsJ8h_TQJvrrY7s55VNVxz2t2wyr4-soec6i_KbCZfLIYAEevippO6emSigv0RtDmVktE9JjNqVv3mXr9Z3RrKzb1-sxa8eiiAYiFUM9H68u-xUKLTfM3_cOSwmrnxmE2xHqOt4jLa2YzJ_6fpDqaQme8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>27901114</pqid></control><display><type>article</type><title>A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media</title><source>ScienceDirect Freedom Collection</source><creator>Lallahem, S. ; Mania, J.</creator><creatorcontrib>Lallahem, S. ; Mania, J.</creatorcontrib><description>One of the more advanced approaches for simulating groundwater flow in karstic and fractured porous media is the combination of a linear and a nonlinear model. The paper presents an attempt to determine outflow influencing parameters in order to simulate aquifer outflow. Our approach in this study is to create a productive interaction system between expert, mathematical model, MERO, and artificial neural networks (ANNs). The proposed method is especially suitable for the problem of large-scale and long-term simulation. In the present project, the first objective is to determine aquifer outflow influencing parameters by the use of MERO model, which gave a good results in a fissured and chalky media, and then introduce these parameters in neural network (NN). To determine outflow influencing parameters, we propose to test the NN under fourth different external input scenarios. The second objective is to investigate the effect of temporal information by taking current and past data sets. The good found results reveal the merit of ANNs-MERO combination and specifically multilayer perceptron (MLP) models. This methodology provided that the network with lower, lag and number hidden layer, consistently produced better performance.</description><identifier>ISSN: 0895-7177</identifier><identifier>EISSN: 1872-9479</identifier><identifier>DOI: 10.1016/S0895-7177(03)00117-1</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Artificial intelligence ; Artificial neural networks ; Chalk media ; Computer science; control theory; systems ; Connectionism. Neural networks ; Exact sciences and technology ; Flows through porous media ; Fluid dynamics ; Fractured media ; Fundamental areas of phenomenology (including applications) ; Groundwater flow ; Karst aquifer ; Mathematical analysis ; Mathematics ; Nonhomogeneous flows ; Partial differential equations ; Physics ; Sciences and techniques of general use</subject><ispartof>Mathematical and computer modelling, 2003-05, Vol.37 (9), p.1047-1061</ispartof><rights>2003</rights><rights>2003 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-c54633e3e11eba2f17418f5a61dd9d6e8a69a1df889488e274bbfa751dd809863</citedby><cites>FETCH-LOGICAL-c449t-c54633e3e11eba2f17418f5a61dd9d6e8a69a1df889488e274bbfa751dd809863</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14842934$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00139302$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lallahem, S.</creatorcontrib><creatorcontrib>Mania, J.</creatorcontrib><title>A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media</title><title>Mathematical and computer modelling</title><description>One of the more advanced approaches for simulating groundwater flow in karstic and fractured porous media is the combination of a linear and a nonlinear model. The paper presents an attempt to determine outflow influencing parameters in order to simulate aquifer outflow. Our approach in this study is to create a productive interaction system between expert, mathematical model, MERO, and artificial neural networks (ANNs). The proposed method is especially suitable for the problem of large-scale and long-term simulation. In the present project, the first objective is to determine aquifer outflow influencing parameters by the use of MERO model, which gave a good results in a fissured and chalky media, and then introduce these parameters in neural network (NN). To determine outflow influencing parameters, we propose to test the NN under fourth different external input scenarios. The second objective is to investigate the effect of temporal information by taking current and past data sets. The good found results reveal the merit of ANNs-MERO combination and specifically multilayer perceptron (MLP) models. This methodology provided that the network with lower, lag and number hidden layer, consistently produced better performance.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Chalk media</subject><subject>Computer science; control theory; systems</subject><subject>Connectionism. Neural networks</subject><subject>Exact sciences and technology</subject><subject>Flows through porous media</subject><subject>Fluid dynamics</subject><subject>Fractured media</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Groundwater flow</subject><subject>Karst aquifer</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonhomogeneous flows</subject><subject>Partial differential equations</subject><subject>Physics</subject><subject>Sciences and techniques of general use</subject><issn>0895-7177</issn><issn>1872-9479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNqFkMFuFSEUhifGJl5bH8GEjcYuRmFgBnBjbppqTW7iQl2Tc5mDRRm4wkyrb1-mt6lLVyeBj_8_fE3zktG3jLLh3VeqdN9KJuUbys8pZUy27EmzYUp2rRZSP202j8iz5nkpPymlvaZq09gtiSkGHxEyyeCjgxDavMTkHJnSiIEsxccfJOKSIdQx36b8i8xor6P_veB7gn9gOgQkPhKXwc5LxpEcUk5LIROOHs6ak5pa8MXDPG2-f7z8dnHV7r58-nyx3bVWCD23thcD58iRMdxD55gUTLkeBjaOehxQwaCBjU4pLZTCTor93oHs67WiWg38tDk_5l5DMIfsJ8h_TQJvrrY7s55VNVxz2t2wyr4-soec6i_KbCZfLIYAEevippO6emSigv0RtDmVktE9JjNqVv3mXr9Z3RrKzb1-sxa8eiiAYiFUM9H68u-xUKLTfM3_cOSwmrnxmE2xHqOt4jLa2YzJ_6fpDqaQme8</recordid><startdate>20030501</startdate><enddate>20030501</enddate><creator>Lallahem, S.</creator><creator>Mania, J.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>20030501</creationdate><title>A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media</title><author>Lallahem, S. ; Mania, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-c54633e3e11eba2f17418f5a61dd9d6e8a69a1df889488e274bbfa751dd809863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Chalk media</topic><topic>Computer science; control theory; systems</topic><topic>Connectionism. Neural networks</topic><topic>Exact sciences and technology</topic><topic>Flows through porous media</topic><topic>Fluid dynamics</topic><topic>Fractured media</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Groundwater flow</topic><topic>Karst aquifer</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonhomogeneous flows</topic><topic>Partial differential equations</topic><topic>Physics</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lallahem, S.</creatorcontrib><creatorcontrib>Mania, J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Mathematical and computer modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lallahem, S.</au><au>Mania, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media</atitle><jtitle>Mathematical and computer modelling</jtitle><date>2003-05-01</date><risdate>2003</risdate><volume>37</volume><issue>9</issue><spage>1047</spage><epage>1061</epage><pages>1047-1061</pages><issn>0895-7177</issn><eissn>1872-9479</eissn><abstract>One of the more advanced approaches for simulating groundwater flow in karstic and fractured porous media is the combination of a linear and a nonlinear model. The paper presents an attempt to determine outflow influencing parameters in order to simulate aquifer outflow. Our approach in this study is to create a productive interaction system between expert, mathematical model, MERO, and artificial neural networks (ANNs). The proposed method is especially suitable for the problem of large-scale and long-term simulation. In the present project, the first objective is to determine aquifer outflow influencing parameters by the use of MERO model, which gave a good results in a fissured and chalky media, and then introduce these parameters in neural network (NN). To determine outflow influencing parameters, we propose to test the NN under fourth different external input scenarios. The second objective is to investigate the effect of temporal information by taking current and past data sets. The good found results reveal the merit of ANNs-MERO combination and specifically multilayer perceptron (MLP) models. This methodology provided that the network with lower, lag and number hidden layer, consistently produced better performance.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/S0895-7177(03)00117-1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0895-7177
ispartof Mathematical and computer modelling, 2003-05, Vol.37 (9), p.1047-1061
issn 0895-7177
1872-9479
language eng
recordid cdi_hal_primary_oai_HAL_hal_00139302v1
source ScienceDirect Freedom Collection
subjects Applied sciences
Artificial intelligence
Artificial neural networks
Chalk media
Computer science
control theory
systems
Connectionism. Neural networks
Exact sciences and technology
Flows through porous media
Fluid dynamics
Fractured media
Fundamental areas of phenomenology (including applications)
Groundwater flow
Karst aquifer
Mathematical analysis
Mathematics
Nonhomogeneous flows
Partial differential equations
Physics
Sciences and techniques of general use
title A nonlinear rainfall-runoff model using neural network technique: example in fractured porous media
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A19%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20nonlinear%20rainfall-runoff%20model%20using%20neural%20network%20technique:%20example%20in%20fractured%20porous%20media&rft.jtitle=Mathematical%20and%20computer%20modelling&rft.au=Lallahem,%20S.&rft.date=2003-05-01&rft.volume=37&rft.issue=9&rft.spage=1047&rft.epage=1061&rft.pages=1047-1061&rft.issn=0895-7177&rft.eissn=1872-9479&rft_id=info:doi/10.1016/S0895-7177(03)00117-1&rft_dat=%3Cproquest_hal_p%3E27901114%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-c54633e3e11eba2f17418f5a61dd9d6e8a69a1df889488e274bbfa751dd809863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=27901114&rft_id=info:pmid/&rfr_iscdi=true