Loading…
Probing nanoscale dipole-dipole interactions by electric force microscopy
We address the issue of dipole-dipole interaction measurements at the nanometer scale. Electric dipoles with tunable effective momentum in the range 10(3)-10(4) D are generated by charge injection in single silicon nanoparticles on a conductive substrate and probed by a spectroscopic electric force...
Saved in:
Published in: | Physical review letters 2004-04, Vol.92 (16), p.166101-166101, Article 166101 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We address the issue of dipole-dipole interaction measurements at the nanometer scale. Electric dipoles with tunable effective momentum in the range 10(3)-10(4) D are generated by charge injection in single silicon nanoparticles on a conductive substrate and probed by a spectroscopic electric force microscopy analysis. Weak dipole-dipole force gradients are measured and identified from their quadratic momentum dependence. The results suggest that dipolar interactions associated with atomic-scale charge displacements or molecules can be probed by noncontact atomic force microscopy. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.92.166101 |