Loading…
Prediction of boron transient enhanced diffusion through the atom-by-atom modeling of extended defects
The modeling of the atom-by-atom growth of extended defects is coupled to the diffusion equations of boron by transferring the free interstitial supersaturation calculated with a defect model into a process simulator. Two methods to achieve this coupling (equilibrium method and fully coupled method,...
Saved in:
Published in: | Journal of applied physics 2003-12, Vol.94 (12), p.7520-7525 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The modeling of the atom-by-atom growth of extended defects is coupled to the diffusion equations of boron by transferring the free interstitial supersaturation calculated with a defect model into a process simulator. Two methods to achieve this coupling (equilibrium method and fully coupled method, respectively) are presented and tested against a variety of experimental conditions. They are first applied to a transient enhanced diffusion experiment carried out on a structure containing several B delta-doped layers, in which the amount of diffusion of the different layers is accurately predicted. The fully coupled method is then used to simulate the diffusion of ultrashallow B-implanted profiles. This work definitely demonstrates the relevance of accurate physical defect models for the successful design of ultrashallow junctions in future generations of integrated circuits. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.1627461 |