Loading…
A class of perfectly contractile graphs
We consider the class A of graphs that contain no odd hole, no antihole, and no “prism” (a graph consisting of two disjoint triangles with three disjoint paths between them). We prove that every graph G ∈ A different from a clique has an “even pair” (two vertices that are not joined by a chordless p...
Saved in:
Published in: | Journal of combinatorial theory. Series B 2006, Vol.96 (1), p.1-19 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-9e492cd102d0d7f5b21e2961dc013e1006af09e432e5237e9c7f7b42f94d57b43 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-9e492cd102d0d7f5b21e2961dc013e1006af09e432e5237e9c7f7b42f94d57b43 |
container_end_page | 19 |
container_issue | 1 |
container_start_page | 1 |
container_title | Journal of combinatorial theory. Series B |
container_volume | 96 |
creator | Maffray, Frédéric Trotignon, Nicolas |
description | We consider the class
A
of graphs that contain no odd hole, no antihole, and no “prism” (a graph consisting of two disjoint triangles with three disjoint paths between them). We prove that every graph
G
∈
A
different from a clique has an “even pair” (two vertices that are not joined by a chordless path of odd length), as conjectured by Everett and Reed [“Even pairs”, in: J.L. Ramírez-Alfonsín, B.A. Reed (eds.), Perfect Graphs, Wiley Interscience, New York, 2001]. Our proof is a polynomial-time algorithm that produces an even pair with the additional property that the contraction of this pair yields a graph in
A
. This entails a polynomial-time algorithm, based on successively contracting even pairs, to color optimally every graph in
A
. This generalizes several results concerning some classical families of perfect graphs. |
doi_str_mv | 10.1016/j.jctb.2005.06.011 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00166912v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0095895605000651</els_id><sourcerecordid>oai_HAL_hal_00166912v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-9e492cd102d0d7f5b21e2961dc013e1006af09e432e5237e9c7f7b42f94d57b43</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsv4Glv4mHXmWQ324CXImqFghc9hzSZ2CxrtyRLoW9vlopHTzMM_zfwf4zdIlQIKB-6qrPjpuIATQWyAsQzNkNQsgQF_JzNAFRTLlQjL9lVSh0ACNEuZuxuWdjepFQMvthT9GTH_ljYYTdGY8fQU_EVzX6brtmFN32im985Z58vzx9Pq3L9_vr2tFyXVoh6LBXViluHwB241jcbjsSVRGcBBSGANB5ySHBquGhJ2da3m5p7VbsmL2LO7k9_t6bX-xi-TTzqwQS9Wq71dINcVyrkB8xZfsraOKQUyf8BCHrSojs9adGTFg1SZy0ZejxBlFscAkWdbKCdJRdiLq_dEP7DfwCZm2kS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A class of perfectly contractile graphs</title><source>ScienceDirect Journals</source><creator>Maffray, Frédéric ; Trotignon, Nicolas</creator><creatorcontrib>Maffray, Frédéric ; Trotignon, Nicolas</creatorcontrib><description>We consider the class
A
of graphs that contain no odd hole, no antihole, and no “prism” (a graph consisting of two disjoint triangles with three disjoint paths between them). We prove that every graph
G
∈
A
different from a clique has an “even pair” (two vertices that are not joined by a chordless path of odd length), as conjectured by Everett and Reed [“Even pairs”, in: J.L. Ramírez-Alfonsín, B.A. Reed (eds.), Perfect Graphs, Wiley Interscience, New York, 2001]. Our proof is a polynomial-time algorithm that produces an even pair with the additional property that the contraction of this pair yields a graph in
A
. This entails a polynomial-time algorithm, based on successively contracting even pairs, to color optimally every graph in
A
. This generalizes several results concerning some classical families of perfect graphs.</description><identifier>ISSN: 0095-8956</identifier><identifier>EISSN: 1096-0902</identifier><identifier>DOI: 10.1016/j.jctb.2005.06.011</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Algorithm ; Coloring ; Combinatorics ; Computer Science ; Discrete Mathematics ; Even pair ; Mathematics ; Perfect graph</subject><ispartof>Journal of combinatorial theory. Series B, 2006, Vol.96 (1), p.1-19</ispartof><rights>2005 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-9e492cd102d0d7f5b21e2961dc013e1006af09e432e5237e9c7f7b42f94d57b43</citedby><cites>FETCH-LOGICAL-c334t-9e492cd102d0d7f5b21e2961dc013e1006af09e432e5237e9c7f7b42f94d57b43</cites><orcidid>0000-0003-1978-0687</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4014,27914,27915,27916</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00166912$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Maffray, Frédéric</creatorcontrib><creatorcontrib>Trotignon, Nicolas</creatorcontrib><title>A class of perfectly contractile graphs</title><title>Journal of combinatorial theory. Series B</title><description>We consider the class
A
of graphs that contain no odd hole, no antihole, and no “prism” (a graph consisting of two disjoint triangles with three disjoint paths between them). We prove that every graph
G
∈
A
different from a clique has an “even pair” (two vertices that are not joined by a chordless path of odd length), as conjectured by Everett and Reed [“Even pairs”, in: J.L. Ramírez-Alfonsín, B.A. Reed (eds.), Perfect Graphs, Wiley Interscience, New York, 2001]. Our proof is a polynomial-time algorithm that produces an even pair with the additional property that the contraction of this pair yields a graph in
A
. This entails a polynomial-time algorithm, based on successively contracting even pairs, to color optimally every graph in
A
. This generalizes several results concerning some classical families of perfect graphs.</description><subject>Algorithm</subject><subject>Coloring</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>Even pair</subject><subject>Mathematics</subject><subject>Perfect graph</subject><issn>0095-8956</issn><issn>1096-0902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsv4Glv4mHXmWQ324CXImqFghc9hzSZ2CxrtyRLoW9vlopHTzMM_zfwf4zdIlQIKB-6qrPjpuIATQWyAsQzNkNQsgQF_JzNAFRTLlQjL9lVSh0ACNEuZuxuWdjepFQMvthT9GTH_ljYYTdGY8fQU_EVzX6brtmFN32im985Z58vzx9Pq3L9_vr2tFyXVoh6LBXViluHwB241jcbjsSVRGcBBSGANB5ySHBquGhJ2da3m5p7VbsmL2LO7k9_t6bX-xi-TTzqwQS9Wq71dINcVyrkB8xZfsraOKQUyf8BCHrSojs9adGTFg1SZy0ZejxBlFscAkWdbKCdJRdiLq_dEP7DfwCZm2kS</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Maffray, Frédéric</creator><creator>Trotignon, Nicolas</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-1978-0687</orcidid></search><sort><creationdate>2006</creationdate><title>A class of perfectly contractile graphs</title><author>Maffray, Frédéric ; Trotignon, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-9e492cd102d0d7f5b21e2961dc013e1006af09e432e5237e9c7f7b42f94d57b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithm</topic><topic>Coloring</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>Even pair</topic><topic>Mathematics</topic><topic>Perfect graph</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maffray, Frédéric</creatorcontrib><creatorcontrib>Trotignon, Nicolas</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of combinatorial theory. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maffray, Frédéric</au><au>Trotignon, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A class of perfectly contractile graphs</atitle><jtitle>Journal of combinatorial theory. Series B</jtitle><date>2006</date><risdate>2006</risdate><volume>96</volume><issue>1</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><issn>0095-8956</issn><eissn>1096-0902</eissn><abstract>We consider the class
A
of graphs that contain no odd hole, no antihole, and no “prism” (a graph consisting of two disjoint triangles with three disjoint paths between them). We prove that every graph
G
∈
A
different from a clique has an “even pair” (two vertices that are not joined by a chordless path of odd length), as conjectured by Everett and Reed [“Even pairs”, in: J.L. Ramírez-Alfonsín, B.A. Reed (eds.), Perfect Graphs, Wiley Interscience, New York, 2001]. Our proof is a polynomial-time algorithm that produces an even pair with the additional property that the contraction of this pair yields a graph in
A
. This entails a polynomial-time algorithm, based on successively contracting even pairs, to color optimally every graph in
A
. This generalizes several results concerning some classical families of perfect graphs.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jctb.2005.06.011</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1978-0687</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0095-8956 |
ispartof | Journal of combinatorial theory. Series B, 2006, Vol.96 (1), p.1-19 |
issn | 0095-8956 1096-0902 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00166912v1 |
source | ScienceDirect Journals |
subjects | Algorithm Coloring Combinatorics Computer Science Discrete Mathematics Even pair Mathematics Perfect graph |
title | A class of perfectly contractile graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T06%3A25%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20class%20of%20perfectly%20contractile%20graphs&rft.jtitle=Journal%20of%20combinatorial%20theory.%20Series%20B&rft.au=Maffray,%20Fr%C3%A9d%C3%A9ric&rft.date=2006&rft.volume=96&rft.issue=1&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.issn=0095-8956&rft.eissn=1096-0902&rft_id=info:doi/10.1016/j.jctb.2005.06.011&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00166912v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-9e492cd102d0d7f5b21e2961dc013e1006af09e432e5237e9c7f7b42f94d57b43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |