Loading…

chemokine stromal cell-derived factor-1/CXCL12 activates the nigrostriatal dopamine system

We recently demonstrated that dopaminergic (DA) neurons of the rat substantia nigra constitutively expressed CXCR4, receptor for the chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12 (SDF-1). To check the physiological relevance of such anatomical observation, in vitro and in vivo approaches we...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurochemistry 2007-08, Vol.102 (4), p.1175-1183
Main Authors: Skrzydelski, D, Guyon, A, Daugé, V, Rovère, C, Apartis, E, Kitabgi, P, Nahon, J.L, Rostène, W, Parsadaniantz, S. Mélik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We recently demonstrated that dopaminergic (DA) neurons of the rat substantia nigra constitutively expressed CXCR4, receptor for the chemokine stromal cell-derived factor-1 (SDF-1)/CXCL12 (SDF-1). To check the physiological relevance of such anatomical observation, in vitro and in vivo approaches were used. Patch clamp recording of DA neurons in rat substantia nigra slices revealed that SDF-1 (10 nmol/L) induced: (i) a depolarization and increased action potential frequency; and (ii) switched the firing pattern of depolarized DA neurons from a tonic to a burst firing mode. This suggests that SDF-1 could increase DA release from neurons. Consistent with this hypothesis, unilateral intranigral injection of SDF-1 (50 ng) in freely moving rat decreased DA content and increased extracellular concentrations of DA and metabolites in the ipsilateral dorsal striatum, as shown using microdialysis. Furthermore, intranigral SDF-1 injection induced a contralateral circling behavior. These effects of SDF-1 were mediated via CXCR4 as they were abrogated by administration of a selective CXCR4 antagonist. Altogether, these data demonstrate that SDF-1, via CXCR4, activates nigrostriatal DA transmission. They show that the central functions of chemokines are not restricted, as originally thought, to neuroinflammation, but extend to neuromodulatory actions on well-defined neuronal circuits in non-pathological conditions.
ISSN:0022-3042
1471-4159
DOI:10.1111/j.1471-4159.2007.04639.x