Loading…
Hertzian crack analysis in alumina–chromium composites
Ceramic metal composites are of interest for their good resistance to crack propagation. We have prepared different kinds of alumina chromium composites, observed their microstructures and made an analysis of Hertzian cracks in order to identify the principle parameters of crack propagation in relat...
Saved in:
Published in: | Journal of the European Ceramic Society 2005-05, Vol.25 (7), p.1119-1132 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c450t-dd7e999773fee4beba8e30141ba4886a76cabc1251fe4c96f765d72461f3e22f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c450t-dd7e999773fee4beba8e30141ba4886a76cabc1251fe4c96f765d72461f3e22f3 |
container_end_page | 1132 |
container_issue | 7 |
container_start_page | 1119 |
container_title | Journal of the European Ceramic Society |
container_volume | 25 |
creator | Geandier, G. Denis, S. Hazotte, A. Mocellin, A. |
description | Ceramic metal composites are of interest for their good resistance to crack propagation. We have prepared different kinds of alumina chromium composites, observed their microstructures and made an analysis of Hertzian cracks in order to identify the principle parameters of crack propagation in relation with the metallic phase size and distribution in the matrix. The crack is analysed at two scales, a macroscopic one to estimate the fracture toughness from the overall crack and a microscopic one to study, at the local level, the influence of the metallic phase on crack propagation. Using macroscopic models the fracture toughness estimation highlights the benefit of the presence of chromium particles. Observations and measurements made on the crack path and metallic phase, from the microstructure analysis, combined with the knowledge of the residual stress state, provide the principal parameters governing crack propagation in these composites. |
doi_str_mv | 10.1016/j.jeurceramsoc.2004.04.022 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00172203v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955221904002201</els_id><sourcerecordid>28513630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-dd7e999773fee4beba8e30141ba4886a76cabc1251fe4c96f765d72461f3e22f3</originalsourceid><addsrcrecordid>eNqNkc1KxEAMxwdRcP14hyIoeOg6M22nHW_i1woLXhS8Ddk0xVnbzjrTCnryHXxDn8SWFfUoBALhl_yT_Bk7EHwquFAny-mSeo_koQkOp5LzdDqGlBtsIoo8iZXQD5tswnWWxVIKvc12QlhyLnKu9YQVM_Ldm4U2Qg_4FEEL9WuwIbJtBHXf2BY-3z_w0bvG9k2Erlm5YDsKe2yrgjrQ_nfeZfdXl3fns3h-e31zfjaPMc14F5dlTlrrPE8qonRBCygo4SIVC0iLQkGuEBYoZCYqSlGrKldZmctUiSohKatklx2v5z5CbVbeNuBfjQNrZmdzM9bGU6TkyYsY2KM1u_LuuafQmcYGpLqGllwfjNQy1Vr9AywykaiED-DpGkTvQvBU_awguBkdMEvz1wEzOmDGkHJoPvxWgYBQVx5atOF3glI6G5QG7mLN0fDHF0veBLTUIpXWE3amdPY_cl9yQ6Ou</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28513630</pqid></control><display><type>article</type><title>Hertzian crack analysis in alumina–chromium composites</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Geandier, G. ; Denis, S. ; Hazotte, A. ; Mocellin, A.</creator><creatorcontrib>Geandier, G. ; Denis, S. ; Hazotte, A. ; Mocellin, A.</creatorcontrib><description>Ceramic metal composites are of interest for their good resistance to crack propagation. We have prepared different kinds of alumina chromium composites, observed their microstructures and made an analysis of Hertzian cracks in order to identify the principle parameters of crack propagation in relation with the metallic phase size and distribution in the matrix. The crack is analysed at two scales, a macroscopic one to estimate the fracture toughness from the overall crack and a microscopic one to study, at the local level, the influence of the metallic phase on crack propagation. Using macroscopic models the fracture toughness estimation highlights the benefit of the presence of chromium particles. Observations and measurements made on the crack path and metallic phase, from the microstructure analysis, combined with the knowledge of the residual stress state, provide the principal parameters governing crack propagation in these composites.</description><identifier>ISSN: 0955-2219</identifier><identifier>EISSN: 1873-619X</identifier><identifier>DOI: 10.1016/j.jeurceramsoc.2004.04.022</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Al 2O 3/Cr ; Applied sciences ; Building materials. Ceramics. Glasses ; Ceramic industries ; Ceramic Matrix Composite ; Cermets, ceramic and refractory composites ; Chemical industry and chemicals ; Chemical Sciences ; Condensed Matter ; Condensed matter: structure, mechanical and thermal properties ; Cristallography ; Cross-disciplinary physics: materials science; rheology ; Engineering Sciences ; Exact sciences and technology ; Fatigue, brittleness, fracture, and cracks ; Fracture toughness ; Hertz crack ; Materials Science ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Mechanics ; Mechanics of materials ; Microstructure ; Miscellaneous ; Other materials ; Physics ; Specific materials ; Technical ceramics</subject><ispartof>Journal of the European Ceramic Society, 2005-05, Vol.25 (7), p.1119-1132</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-dd7e999773fee4beba8e30141ba4886a76cabc1251fe4c96f765d72461f3e22f3</citedby><cites>FETCH-LOGICAL-c450t-dd7e999773fee4beba8e30141ba4886a76cabc1251fe4c96f765d72461f3e22f3</cites><orcidid>0000-0002-9459-1758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16695285$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00172203$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Geandier, G.</creatorcontrib><creatorcontrib>Denis, S.</creatorcontrib><creatorcontrib>Hazotte, A.</creatorcontrib><creatorcontrib>Mocellin, A.</creatorcontrib><title>Hertzian crack analysis in alumina–chromium composites</title><title>Journal of the European Ceramic Society</title><description>Ceramic metal composites are of interest for their good resistance to crack propagation. We have prepared different kinds of alumina chromium composites, observed their microstructures and made an analysis of Hertzian cracks in order to identify the principle parameters of crack propagation in relation with the metallic phase size and distribution in the matrix. The crack is analysed at two scales, a macroscopic one to estimate the fracture toughness from the overall crack and a microscopic one to study, at the local level, the influence of the metallic phase on crack propagation. Using macroscopic models the fracture toughness estimation highlights the benefit of the presence of chromium particles. Observations and measurements made on the crack path and metallic phase, from the microstructure analysis, combined with the knowledge of the residual stress state, provide the principal parameters governing crack propagation in these composites.</description><subject>Al 2O 3/Cr</subject><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Ceramic Matrix Composite</subject><subject>Cermets, ceramic and refractory composites</subject><subject>Chemical industry and chemicals</subject><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cristallography</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Fracture toughness</subject><subject>Hertz crack</subject><subject>Materials Science</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Microstructure</subject><subject>Miscellaneous</subject><subject>Other materials</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Technical ceramics</subject><issn>0955-2219</issn><issn>1873-619X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkc1KxEAMxwdRcP14hyIoeOg6M22nHW_i1woLXhS8Ddk0xVnbzjrTCnryHXxDn8SWFfUoBALhl_yT_Bk7EHwquFAny-mSeo_koQkOp5LzdDqGlBtsIoo8iZXQD5tswnWWxVIKvc12QlhyLnKu9YQVM_Ldm4U2Qg_4FEEL9WuwIbJtBHXf2BY-3z_w0bvG9k2Erlm5YDsKe2yrgjrQ_nfeZfdXl3fns3h-e31zfjaPMc14F5dlTlrrPE8qonRBCygo4SIVC0iLQkGuEBYoZCYqSlGrKldZmctUiSohKatklx2v5z5CbVbeNuBfjQNrZmdzM9bGU6TkyYsY2KM1u_LuuafQmcYGpLqGllwfjNQy1Vr9AywykaiED-DpGkTvQvBU_awguBkdMEvz1wEzOmDGkHJoPvxWgYBQVx5atOF3glI6G5QG7mLN0fDHF0veBLTUIpXWE3amdPY_cl9yQ6Ou</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Geandier, G.</creator><creator>Denis, S.</creator><creator>Hazotte, A.</creator><creator>Mocellin, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>7QF</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9459-1758</orcidid></search><sort><creationdate>20050501</creationdate><title>Hertzian crack analysis in alumina–chromium composites</title><author>Geandier, G. ; Denis, S. ; Hazotte, A. ; Mocellin, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-dd7e999773fee4beba8e30141ba4886a76cabc1251fe4c96f765d72461f3e22f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Al 2O 3/Cr</topic><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Ceramic Matrix Composite</topic><topic>Cermets, ceramic and refractory composites</topic><topic>Chemical industry and chemicals</topic><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cristallography</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Fracture toughness</topic><topic>Hertz crack</topic><topic>Materials Science</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Microstructure</topic><topic>Miscellaneous</topic><topic>Other materials</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Technical ceramics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geandier, G.</creatorcontrib><creatorcontrib>Denis, S.</creatorcontrib><creatorcontrib>Hazotte, A.</creatorcontrib><creatorcontrib>Mocellin, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of the European Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geandier, G.</au><au>Denis, S.</au><au>Hazotte, A.</au><au>Mocellin, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hertzian crack analysis in alumina–chromium composites</atitle><jtitle>Journal of the European Ceramic Society</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>25</volume><issue>7</issue><spage>1119</spage><epage>1132</epage><pages>1119-1132</pages><issn>0955-2219</issn><eissn>1873-619X</eissn><abstract>Ceramic metal composites are of interest for their good resistance to crack propagation. We have prepared different kinds of alumina chromium composites, observed their microstructures and made an analysis of Hertzian cracks in order to identify the principle parameters of crack propagation in relation with the metallic phase size and distribution in the matrix. The crack is analysed at two scales, a macroscopic one to estimate the fracture toughness from the overall crack and a microscopic one to study, at the local level, the influence of the metallic phase on crack propagation. Using macroscopic models the fracture toughness estimation highlights the benefit of the presence of chromium particles. Observations and measurements made on the crack path and metallic phase, from the microstructure analysis, combined with the knowledge of the residual stress state, provide the principal parameters governing crack propagation in these composites.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jeurceramsoc.2004.04.022</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9459-1758</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0955-2219 |
ispartof | Journal of the European Ceramic Society, 2005-05, Vol.25 (7), p.1119-1132 |
issn | 0955-2219 1873-619X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00172203v1 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Al 2O 3/Cr Applied sciences Building materials. Ceramics. Glasses Ceramic industries Ceramic Matrix Composite Cermets, ceramic and refractory composites Chemical industry and chemicals Chemical Sciences Condensed Matter Condensed matter: structure, mechanical and thermal properties Cristallography Cross-disciplinary physics: materials science rheology Engineering Sciences Exact sciences and technology Fatigue, brittleness, fracture, and cracks Fracture toughness Hertz crack Materials Science Mechanical and acoustical properties of condensed matter Mechanical properties of solids Mechanics Mechanics of materials Microstructure Miscellaneous Other materials Physics Specific materials Technical ceramics |
title | Hertzian crack analysis in alumina–chromium composites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hertzian%20crack%20analysis%20in%20alumina%E2%80%93chromium%20composites&rft.jtitle=Journal%20of%20the%20European%20Ceramic%20Society&rft.au=Geandier,%20G.&rft.date=2005-05-01&rft.volume=25&rft.issue=7&rft.spage=1119&rft.epage=1132&rft.pages=1119-1132&rft.issn=0955-2219&rft.eissn=1873-619X&rft_id=info:doi/10.1016/j.jeurceramsoc.2004.04.022&rft_dat=%3Cproquest_hal_p%3E28513630%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-dd7e999773fee4beba8e30141ba4886a76cabc1251fe4c96f765d72461f3e22f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28513630&rft_id=info:pmid/&rfr_iscdi=true |