Loading…

Hertzian crack analysis in alumina–chromium composites

Ceramic metal composites are of interest for their good resistance to crack propagation. We have prepared different kinds of alumina chromium composites, observed their microstructures and made an analysis of Hertzian cracks in order to identify the principle parameters of crack propagation in relat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the European Ceramic Society 2005-05, Vol.25 (7), p.1119-1132
Main Authors: Geandier, G., Denis, S., Hazotte, A., Mocellin, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c450t-dd7e999773fee4beba8e30141ba4886a76cabc1251fe4c96f765d72461f3e22f3
cites cdi_FETCH-LOGICAL-c450t-dd7e999773fee4beba8e30141ba4886a76cabc1251fe4c96f765d72461f3e22f3
container_end_page 1132
container_issue 7
container_start_page 1119
container_title Journal of the European Ceramic Society
container_volume 25
creator Geandier, G.
Denis, S.
Hazotte, A.
Mocellin, A.
description Ceramic metal composites are of interest for their good resistance to crack propagation. We have prepared different kinds of alumina chromium composites, observed their microstructures and made an analysis of Hertzian cracks in order to identify the principle parameters of crack propagation in relation with the metallic phase size and distribution in the matrix. The crack is analysed at two scales, a macroscopic one to estimate the fracture toughness from the overall crack and a microscopic one to study, at the local level, the influence of the metallic phase on crack propagation. Using macroscopic models the fracture toughness estimation highlights the benefit of the presence of chromium particles. Observations and measurements made on the crack path and metallic phase, from the microstructure analysis, combined with the knowledge of the residual stress state, provide the principal parameters governing crack propagation in these composites.
doi_str_mv 10.1016/j.jeurceramsoc.2004.04.022
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00172203v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0955221904002201</els_id><sourcerecordid>28513630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-dd7e999773fee4beba8e30141ba4886a76cabc1251fe4c96f765d72461f3e22f3</originalsourceid><addsrcrecordid>eNqNkc1KxEAMxwdRcP14hyIoeOg6M22nHW_i1woLXhS8Ddk0xVnbzjrTCnryHXxDn8SWFfUoBALhl_yT_Bk7EHwquFAny-mSeo_koQkOp5LzdDqGlBtsIoo8iZXQD5tswnWWxVIKvc12QlhyLnKu9YQVM_Ldm4U2Qg_4FEEL9WuwIbJtBHXf2BY-3z_w0bvG9k2Erlm5YDsKe2yrgjrQ_nfeZfdXl3fns3h-e31zfjaPMc14F5dlTlrrPE8qonRBCygo4SIVC0iLQkGuEBYoZCYqSlGrKldZmctUiSohKatklx2v5z5CbVbeNuBfjQNrZmdzM9bGU6TkyYsY2KM1u_LuuafQmcYGpLqGllwfjNQy1Vr9AywykaiED-DpGkTvQvBU_awguBkdMEvz1wEzOmDGkHJoPvxWgYBQVx5atOF3glI6G5QG7mLN0fDHF0veBLTUIpXWE3amdPY_cl9yQ6Ou</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28513630</pqid></control><display><type>article</type><title>Hertzian crack analysis in alumina–chromium composites</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Geandier, G. ; Denis, S. ; Hazotte, A. ; Mocellin, A.</creator><creatorcontrib>Geandier, G. ; Denis, S. ; Hazotte, A. ; Mocellin, A.</creatorcontrib><description>Ceramic metal composites are of interest for their good resistance to crack propagation. We have prepared different kinds of alumina chromium composites, observed their microstructures and made an analysis of Hertzian cracks in order to identify the principle parameters of crack propagation in relation with the metallic phase size and distribution in the matrix. The crack is analysed at two scales, a macroscopic one to estimate the fracture toughness from the overall crack and a microscopic one to study, at the local level, the influence of the metallic phase on crack propagation. Using macroscopic models the fracture toughness estimation highlights the benefit of the presence of chromium particles. Observations and measurements made on the crack path and metallic phase, from the microstructure analysis, combined with the knowledge of the residual stress state, provide the principal parameters governing crack propagation in these composites.</description><identifier>ISSN: 0955-2219</identifier><identifier>EISSN: 1873-619X</identifier><identifier>DOI: 10.1016/j.jeurceramsoc.2004.04.022</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Al 2O 3/Cr ; Applied sciences ; Building materials. Ceramics. Glasses ; Ceramic industries ; Ceramic Matrix Composite ; Cermets, ceramic and refractory composites ; Chemical industry and chemicals ; Chemical Sciences ; Condensed Matter ; Condensed matter: structure, mechanical and thermal properties ; Cristallography ; Cross-disciplinary physics: materials science; rheology ; Engineering Sciences ; Exact sciences and technology ; Fatigue, brittleness, fracture, and cracks ; Fracture toughness ; Hertz crack ; Materials Science ; Mechanical and acoustical properties of condensed matter ; Mechanical properties of solids ; Mechanics ; Mechanics of materials ; Microstructure ; Miscellaneous ; Other materials ; Physics ; Specific materials ; Technical ceramics</subject><ispartof>Journal of the European Ceramic Society, 2005-05, Vol.25 (7), p.1119-1132</ispartof><rights>2004 Elsevier Ltd</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-dd7e999773fee4beba8e30141ba4886a76cabc1251fe4c96f765d72461f3e22f3</citedby><cites>FETCH-LOGICAL-c450t-dd7e999773fee4beba8e30141ba4886a76cabc1251fe4c96f765d72461f3e22f3</cites><orcidid>0000-0002-9459-1758</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16695285$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00172203$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Geandier, G.</creatorcontrib><creatorcontrib>Denis, S.</creatorcontrib><creatorcontrib>Hazotte, A.</creatorcontrib><creatorcontrib>Mocellin, A.</creatorcontrib><title>Hertzian crack analysis in alumina–chromium composites</title><title>Journal of the European Ceramic Society</title><description>Ceramic metal composites are of interest for their good resistance to crack propagation. We have prepared different kinds of alumina chromium composites, observed their microstructures and made an analysis of Hertzian cracks in order to identify the principle parameters of crack propagation in relation with the metallic phase size and distribution in the matrix. The crack is analysed at two scales, a macroscopic one to estimate the fracture toughness from the overall crack and a microscopic one to study, at the local level, the influence of the metallic phase on crack propagation. Using macroscopic models the fracture toughness estimation highlights the benefit of the presence of chromium particles. Observations and measurements made on the crack path and metallic phase, from the microstructure analysis, combined with the knowledge of the residual stress state, provide the principal parameters governing crack propagation in these composites.</description><subject>Al 2O 3/Cr</subject><subject>Applied sciences</subject><subject>Building materials. Ceramics. Glasses</subject><subject>Ceramic industries</subject><subject>Ceramic Matrix Composite</subject><subject>Cermets, ceramic and refractory composites</subject><subject>Chemical industry and chemicals</subject><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cristallography</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fatigue, brittleness, fracture, and cracks</subject><subject>Fracture toughness</subject><subject>Hertz crack</subject><subject>Materials Science</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Mechanical properties of solids</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Microstructure</subject><subject>Miscellaneous</subject><subject>Other materials</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Technical ceramics</subject><issn>0955-2219</issn><issn>1873-619X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqNkc1KxEAMxwdRcP14hyIoeOg6M22nHW_i1woLXhS8Ddk0xVnbzjrTCnryHXxDn8SWFfUoBALhl_yT_Bk7EHwquFAny-mSeo_koQkOp5LzdDqGlBtsIoo8iZXQD5tswnWWxVIKvc12QlhyLnKu9YQVM_Ldm4U2Qg_4FEEL9WuwIbJtBHXf2BY-3z_w0bvG9k2Erlm5YDsKe2yrgjrQ_nfeZfdXl3fns3h-e31zfjaPMc14F5dlTlrrPE8qonRBCygo4SIVC0iLQkGuEBYoZCYqSlGrKldZmctUiSohKatklx2v5z5CbVbeNuBfjQNrZmdzM9bGU6TkyYsY2KM1u_LuuafQmcYGpLqGllwfjNQy1Vr9AywykaiED-DpGkTvQvBU_awguBkdMEvz1wEzOmDGkHJoPvxWgYBQVx5atOF3glI6G5QG7mLN0fDHF0veBLTUIpXWE3amdPY_cl9yQ6Ou</recordid><startdate>20050501</startdate><enddate>20050501</enddate><creator>Geandier, G.</creator><creator>Denis, S.</creator><creator>Hazotte, A.</creator><creator>Mocellin, A.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>7QF</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9459-1758</orcidid></search><sort><creationdate>20050501</creationdate><title>Hertzian crack analysis in alumina–chromium composites</title><author>Geandier, G. ; Denis, S. ; Hazotte, A. ; Mocellin, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-dd7e999773fee4beba8e30141ba4886a76cabc1251fe4c96f765d72461f3e22f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Al 2O 3/Cr</topic><topic>Applied sciences</topic><topic>Building materials. Ceramics. Glasses</topic><topic>Ceramic industries</topic><topic>Ceramic Matrix Composite</topic><topic>Cermets, ceramic and refractory composites</topic><topic>Chemical industry and chemicals</topic><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cristallography</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fatigue, brittleness, fracture, and cracks</topic><topic>Fracture toughness</topic><topic>Hertz crack</topic><topic>Materials Science</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Mechanical properties of solids</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Microstructure</topic><topic>Miscellaneous</topic><topic>Other materials</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Technical ceramics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geandier, G.</creatorcontrib><creatorcontrib>Denis, S.</creatorcontrib><creatorcontrib>Hazotte, A.</creatorcontrib><creatorcontrib>Mocellin, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Aluminium Industry Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of the European Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geandier, G.</au><au>Denis, S.</au><au>Hazotte, A.</au><au>Mocellin, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hertzian crack analysis in alumina–chromium composites</atitle><jtitle>Journal of the European Ceramic Society</jtitle><date>2005-05-01</date><risdate>2005</risdate><volume>25</volume><issue>7</issue><spage>1119</spage><epage>1132</epage><pages>1119-1132</pages><issn>0955-2219</issn><eissn>1873-619X</eissn><abstract>Ceramic metal composites are of interest for their good resistance to crack propagation. We have prepared different kinds of alumina chromium composites, observed their microstructures and made an analysis of Hertzian cracks in order to identify the principle parameters of crack propagation in relation with the metallic phase size and distribution in the matrix. The crack is analysed at two scales, a macroscopic one to estimate the fracture toughness from the overall crack and a microscopic one to study, at the local level, the influence of the metallic phase on crack propagation. Using macroscopic models the fracture toughness estimation highlights the benefit of the presence of chromium particles. Observations and measurements made on the crack path and metallic phase, from the microstructure analysis, combined with the knowledge of the residual stress state, provide the principal parameters governing crack propagation in these composites.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.jeurceramsoc.2004.04.022</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9459-1758</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0955-2219
ispartof Journal of the European Ceramic Society, 2005-05, Vol.25 (7), p.1119-1132
issn 0955-2219
1873-619X
language eng
recordid cdi_hal_primary_oai_HAL_hal_00172203v1
source ScienceDirect Freedom Collection 2022-2024
subjects Al 2O 3/Cr
Applied sciences
Building materials. Ceramics. Glasses
Ceramic industries
Ceramic Matrix Composite
Cermets, ceramic and refractory composites
Chemical industry and chemicals
Chemical Sciences
Condensed Matter
Condensed matter: structure, mechanical and thermal properties
Cristallography
Cross-disciplinary physics: materials science
rheology
Engineering Sciences
Exact sciences and technology
Fatigue, brittleness, fracture, and cracks
Fracture toughness
Hertz crack
Materials Science
Mechanical and acoustical properties of condensed matter
Mechanical properties of solids
Mechanics
Mechanics of materials
Microstructure
Miscellaneous
Other materials
Physics
Specific materials
Technical ceramics
title Hertzian crack analysis in alumina–chromium composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A33%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hertzian%20crack%20analysis%20in%20alumina%E2%80%93chromium%20composites&rft.jtitle=Journal%20of%20the%20European%20Ceramic%20Society&rft.au=Geandier,%20G.&rft.date=2005-05-01&rft.volume=25&rft.issue=7&rft.spage=1119&rft.epage=1132&rft.pages=1119-1132&rft.issn=0955-2219&rft.eissn=1873-619X&rft_id=info:doi/10.1016/j.jeurceramsoc.2004.04.022&rft_dat=%3Cproquest_hal_p%3E28513630%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-dd7e999773fee4beba8e30141ba4886a76cabc1251fe4c96f765d72461f3e22f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28513630&rft_id=info:pmid/&rfr_iscdi=true