Loading…
Original crosslinking of poly(vinylidene fluoride) via trialkoxysilane-containing cure-site monomers
The synthesis of fluorinated monomers bearing an ω‐trialkoxysilane function (4,5,5‐trifluoropent‐4‐ene‐1‐trimethoxysilane and 4,5,5‐trifluoropent‐4‐ene‐1‐triethoxysilane), their radical copolymerization with vinylidene fluoride (VDF), and the crosslinking of resulting copolymers are presented. The s...
Saved in:
Published in: | Journal of polymer science. Part A, Polymer chemistry Polymer chemistry, 2006-06, Vol.44 (12), p.3896-3910 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The synthesis of fluorinated monomers bearing an ω‐trialkoxysilane function (4,5,5‐trifluoropent‐4‐ene‐1‐trimethoxysilane and 4,5,5‐trifluoropent‐4‐ene‐1‐triethoxysilane), their radical copolymerization with vinylidene fluoride (VDF), and the crosslinking of resulting copolymers are presented. The silicon‐containing fluoromonomers were prepared from a three step‐reaction from ClCF2CFClI, last step being the hydrosilylation of 1,1,2‐trifluoro‐1,4‐pentadiene with trialkoxysilane. The copolymerizations of these silicon‐containing fluoromonomers with VDF led to original PVDF bearing pendant trialkoxysilane functions. Their microstructures, characterized by NMR showed that VDF was the more incorporated. These latter ones were crosslinked in the presence of moisture at 200 °C leading to insoluble materials stable in solvents, oils, water, and to acids. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3896–3910, 2006
The synthesis and copolymerizations of silicon‐containing fluoromonomers with vinylidene fluoride (VDF) led to original PVDF which were crosslinked in the presence of moisture at 200 °C leading to insoluble materials stable in solvents, oils, water, and to acids. |
---|---|
ISSN: | 0887-624X 1099-0518 |
DOI: | 10.1002/pola.21489 |