Loading…

On digital plane preimage structure

In digital geometry, digital straightness is an important concept both for practical motivations and theoretical interests. Concerning the digital straightness in dimension 2, many digital straight line characterizations exist and the digital straight segment preimage is well known. In this article,...

Full description

Saved in:
Bibliographic Details
Published in:Discrete Applied Mathematics 2005-10, Vol.151 (1), p.78-92
Main Authors: Coeurjolly, D., Sivignon, I., Dupont, F., Feschet, F., Chassery, J.-M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-3e9b3106d6c9e63775f8cb33b7a58640be8387bc5d543aa720da3bd7752773363
cites cdi_FETCH-LOGICAL-c404t-3e9b3106d6c9e63775f8cb33b7a58640be8387bc5d543aa720da3bd7752773363
container_end_page 92
container_issue 1
container_start_page 78
container_title Discrete Applied Mathematics
container_volume 151
creator Coeurjolly, D.
Sivignon, I.
Dupont, F.
Feschet, F.
Chassery, J.-M.
description In digital geometry, digital straightness is an important concept both for practical motivations and theoretical interests. Concerning the digital straightness in dimension 2, many digital straight line characterizations exist and the digital straight segment preimage is well known. In this article, we investigate the preimage associated to digital planes. More precisely, we present first structure theorems that describe the preimage of a digital plane. Furthermore, we present a bound on the number of preimage faces under some given hypotheses.
doi_str_mv 10.1016/j.dam.2005.02.022
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00185085v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X0500123X</els_id><sourcerecordid>oai_HAL_hal_00185085v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-3e9b3106d6c9e63775f8cb33b7a58640be8387bc5d543aa720da3bd7752773363</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuCePCw6yTZfBRPpVQrFHpR8BaySbambLdLsi34782yojdhYJjheefjRegWQ4EB88ddYfW-IACsAJKCnKEJloLkXAh8jiaJ4TnB8uMSXcW4AwCcqgm627SZ9Vvf6ybrGt26rAvO7_XWZbEPR9Mfg7tGF7Vuorv5yVP0_rx8W6zy9ebldTFf56aEss-pm1UUA7fczBynQrBamorSSmgmeQmVk1SKyjDLSqq1IGA1rWziiBCUcjpFD-PcT92oLqQrwpc6aK9W87UaeuloyUCyE04sHlkTDjEGV_8KMKjBEbVTyRE1OKKApCBJcz9qOh2NbuqgW-Pjn1BgJvhsmP00ci49e_IuqGi8a42zPjjTK3vw_2z5BmGFcxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On digital plane preimage structure</title><source>Elsevier</source><creator>Coeurjolly, D. ; Sivignon, I. ; Dupont, F. ; Feschet, F. ; Chassery, J.-M.</creator><creatorcontrib>Coeurjolly, D. ; Sivignon, I. ; Dupont, F. ; Feschet, F. ; Chassery, J.-M.</creatorcontrib><description>In digital geometry, digital straightness is an important concept both for practical motivations and theoretical interests. Concerning the digital straightness in dimension 2, many digital straight line characterizations exist and the digital straight segment preimage is well known. In this article, we investigate the preimage associated to digital planes. More precisely, we present first structure theorems that describe the preimage of a digital plane. Furthermore, we present a bound on the number of preimage faces under some given hypotheses.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2005.02.022</identifier><identifier>CODEN: DAMADU</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computational Geometry ; Computer Science ; Computer science; control theory; systems ; Digital plane preimage ; Digital straight line ; Dual transformation ; Exact sciences and technology ; Image Processing ; Pattern recognition. Digital image processing. Computational geometry ; Theoretical computing</subject><ispartof>Discrete Applied Mathematics, 2005-10, Vol.151 (1), p.78-92</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-3e9b3106d6c9e63775f8cb33b7a58640be8387bc5d543aa720da3bd7752773363</citedby><cites>FETCH-LOGICAL-c404t-3e9b3106d6c9e63775f8cb33b7a58640be8387bc5d543aa720da3bd7752773363</cites><orcidid>0000-0001-6611-4420 ; 0000-0003-3164-8697 ; 0000-0002-0243-2347 ; 0000-0001-5178-0842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17157691$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00185085$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Coeurjolly, D.</creatorcontrib><creatorcontrib>Sivignon, I.</creatorcontrib><creatorcontrib>Dupont, F.</creatorcontrib><creatorcontrib>Feschet, F.</creatorcontrib><creatorcontrib>Chassery, J.-M.</creatorcontrib><title>On digital plane preimage structure</title><title>Discrete Applied Mathematics</title><description>In digital geometry, digital straightness is an important concept both for practical motivations and theoretical interests. Concerning the digital straightness in dimension 2, many digital straight line characterizations exist and the digital straight segment preimage is well known. In this article, we investigate the preimage associated to digital planes. More precisely, we present first structure theorems that describe the preimage of a digital plane. Furthermore, we present a bound on the number of preimage faces under some given hypotheses.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computational Geometry</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Digital plane preimage</subject><subject>Digital straight line</subject><subject>Dual transformation</subject><subject>Exact sciences and technology</subject><subject>Image Processing</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Theoretical computing</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNuCePCw6yTZfBRPpVQrFHpR8BaySbambLdLsi34782yojdhYJjheefjRegWQ4EB88ddYfW-IACsAJKCnKEJloLkXAh8jiaJ4TnB8uMSXcW4AwCcqgm627SZ9Vvf6ybrGt26rAvO7_XWZbEPR9Mfg7tGF7Vuorv5yVP0_rx8W6zy9ebldTFf56aEss-pm1UUA7fczBynQrBamorSSmgmeQmVk1SKyjDLSqq1IGA1rWziiBCUcjpFD-PcT92oLqQrwpc6aK9W87UaeuloyUCyE04sHlkTDjEGV_8KMKjBEbVTyRE1OKKApCBJcz9qOh2NbuqgW-Pjn1BgJvhsmP00ci49e_IuqGi8a42zPjjTK3vw_2z5BmGFcxg</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Coeurjolly, D.</creator><creator>Sivignon, I.</creator><creator>Dupont, F.</creator><creator>Feschet, F.</creator><creator>Chassery, J.-M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6611-4420</orcidid><orcidid>https://orcid.org/0000-0003-3164-8697</orcidid><orcidid>https://orcid.org/0000-0002-0243-2347</orcidid><orcidid>https://orcid.org/0000-0001-5178-0842</orcidid></search><sort><creationdate>20051001</creationdate><title>On digital plane preimage structure</title><author>Coeurjolly, D. ; Sivignon, I. ; Dupont, F. ; Feschet, F. ; Chassery, J.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-3e9b3106d6c9e63775f8cb33b7a58640be8387bc5d543aa720da3bd7752773363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computational Geometry</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Digital plane preimage</topic><topic>Digital straight line</topic><topic>Dual transformation</topic><topic>Exact sciences and technology</topic><topic>Image Processing</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coeurjolly, D.</creatorcontrib><creatorcontrib>Sivignon, I.</creatorcontrib><creatorcontrib>Dupont, F.</creatorcontrib><creatorcontrib>Feschet, F.</creatorcontrib><creatorcontrib>Chassery, J.-M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coeurjolly, D.</au><au>Sivignon, I.</au><au>Dupont, F.</au><au>Feschet, F.</au><au>Chassery, J.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On digital plane preimage structure</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2005-10-01</date><risdate>2005</risdate><volume>151</volume><issue>1</issue><spage>78</spage><epage>92</epage><pages>78-92</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><coden>DAMADU</coden><abstract>In digital geometry, digital straightness is an important concept both for practical motivations and theoretical interests. Concerning the digital straightness in dimension 2, many digital straight line characterizations exist and the digital straight segment preimage is well known. In this article, we investigate the preimage associated to digital planes. More precisely, we present first structure theorems that describe the preimage of a digital plane. Furthermore, we present a bound on the number of preimage faces under some given hypotheses.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2005.02.022</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6611-4420</orcidid><orcidid>https://orcid.org/0000-0003-3164-8697</orcidid><orcidid>https://orcid.org/0000-0002-0243-2347</orcidid><orcidid>https://orcid.org/0000-0001-5178-0842</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2005-10, Vol.151 (1), p.78-92
issn 0166-218X
1872-6771
language eng
recordid cdi_hal_primary_oai_HAL_hal_00185085v1
source Elsevier
subjects Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computational Geometry
Computer Science
Computer science
control theory
systems
Digital plane preimage
Digital straight line
Dual transformation
Exact sciences and technology
Image Processing
Pattern recognition. Digital image processing. Computational geometry
Theoretical computing
title On digital plane preimage structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20digital%20plane%20preimage%20structure&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Coeurjolly,%20D.&rft.date=2005-10-01&rft.volume=151&rft.issue=1&rft.spage=78&rft.epage=92&rft.pages=78-92&rft.issn=0166-218X&rft.eissn=1872-6771&rft.coden=DAMADU&rft_id=info:doi/10.1016/j.dam.2005.02.022&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00185085v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-3e9b3106d6c9e63775f8cb33b7a58640be8387bc5d543aa720da3bd7752773363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true