Loading…
On digital plane preimage structure
In digital geometry, digital straightness is an important concept both for practical motivations and theoretical interests. Concerning the digital straightness in dimension 2, many digital straight line characterizations exist and the digital straight segment preimage is well known. In this article,...
Saved in:
Published in: | Discrete Applied Mathematics 2005-10, Vol.151 (1), p.78-92 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-3e9b3106d6c9e63775f8cb33b7a58640be8387bc5d543aa720da3bd7752773363 |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-3e9b3106d6c9e63775f8cb33b7a58640be8387bc5d543aa720da3bd7752773363 |
container_end_page | 92 |
container_issue | 1 |
container_start_page | 78 |
container_title | Discrete Applied Mathematics |
container_volume | 151 |
creator | Coeurjolly, D. Sivignon, I. Dupont, F. Feschet, F. Chassery, J.-M. |
description | In digital geometry, digital straightness is an important concept both for practical motivations and theoretical interests. Concerning the digital straightness in dimension 2, many digital straight line characterizations exist and the digital straight segment preimage is well known. In this article, we investigate the preimage associated to digital planes. More precisely, we present first structure theorems that describe the preimage of a digital plane. Furthermore, we present a bound on the number of preimage faces under some given hypotheses. |
doi_str_mv | 10.1016/j.dam.2005.02.022 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00185085v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0166218X0500123X</els_id><sourcerecordid>oai_HAL_hal_00185085v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-3e9b3106d6c9e63775f8cb33b7a58640be8387bc5d543aa720da3bd7752773363</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNuCePCw6yTZfBRPpVQrFHpR8BaySbambLdLsi34782yojdhYJjheefjRegWQ4EB88ddYfW-IACsAJKCnKEJloLkXAh8jiaJ4TnB8uMSXcW4AwCcqgm627SZ9Vvf6ybrGt26rAvO7_XWZbEPR9Mfg7tGF7Vuorv5yVP0_rx8W6zy9ebldTFf56aEss-pm1UUA7fczBynQrBamorSSmgmeQmVk1SKyjDLSqq1IGA1rWziiBCUcjpFD-PcT92oLqQrwpc6aK9W87UaeuloyUCyE04sHlkTDjEGV_8KMKjBEbVTyRE1OKKApCBJcz9qOh2NbuqgW-Pjn1BgJvhsmP00ci49e_IuqGi8a42zPjjTK3vw_2z5BmGFcxg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On digital plane preimage structure</title><source>Elsevier</source><creator>Coeurjolly, D. ; Sivignon, I. ; Dupont, F. ; Feschet, F. ; Chassery, J.-M.</creator><creatorcontrib>Coeurjolly, D. ; Sivignon, I. ; Dupont, F. ; Feschet, F. ; Chassery, J.-M.</creatorcontrib><description>In digital geometry, digital straightness is an important concept both for practical motivations and theoretical interests. Concerning the digital straightness in dimension 2, many digital straight line characterizations exist and the digital straight segment preimage is well known. In this article, we investigate the preimage associated to digital planes. More precisely, we present first structure theorems that describe the preimage of a digital plane. Furthermore, we present a bound on the number of preimage faces under some given hypotheses.</description><identifier>ISSN: 0166-218X</identifier><identifier>EISSN: 1872-6771</identifier><identifier>DOI: 10.1016/j.dam.2005.02.022</identifier><identifier>CODEN: DAMADU</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computational Geometry ; Computer Science ; Computer science; control theory; systems ; Digital plane preimage ; Digital straight line ; Dual transformation ; Exact sciences and technology ; Image Processing ; Pattern recognition. Digital image processing. Computational geometry ; Theoretical computing</subject><ispartof>Discrete Applied Mathematics, 2005-10, Vol.151 (1), p.78-92</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-3e9b3106d6c9e63775f8cb33b7a58640be8387bc5d543aa720da3bd7752773363</citedby><cites>FETCH-LOGICAL-c404t-3e9b3106d6c9e63775f8cb33b7a58640be8387bc5d543aa720da3bd7752773363</cites><orcidid>0000-0001-6611-4420 ; 0000-0003-3164-8697 ; 0000-0002-0243-2347 ; 0000-0001-5178-0842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17157691$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00185085$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Coeurjolly, D.</creatorcontrib><creatorcontrib>Sivignon, I.</creatorcontrib><creatorcontrib>Dupont, F.</creatorcontrib><creatorcontrib>Feschet, F.</creatorcontrib><creatorcontrib>Chassery, J.-M.</creatorcontrib><title>On digital plane preimage structure</title><title>Discrete Applied Mathematics</title><description>In digital geometry, digital straightness is an important concept both for practical motivations and theoretical interests. Concerning the digital straightness in dimension 2, many digital straight line characterizations exist and the digital straight segment preimage is well known. In this article, we investigate the preimage associated to digital planes. More precisely, we present first structure theorems that describe the preimage of a digital plane. Furthermore, we present a bound on the number of preimage faces under some given hypotheses.</description><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computational Geometry</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Digital plane preimage</subject><subject>Digital straight line</subject><subject>Dual transformation</subject><subject>Exact sciences and technology</subject><subject>Image Processing</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Theoretical computing</subject><issn>0166-218X</issn><issn>1872-6771</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNuCePCw6yTZfBRPpVQrFHpR8BaySbambLdLsi34782yojdhYJjheefjRegWQ4EB88ddYfW-IACsAJKCnKEJloLkXAh8jiaJ4TnB8uMSXcW4AwCcqgm627SZ9Vvf6ybrGt26rAvO7_XWZbEPR9Mfg7tGF7Vuorv5yVP0_rx8W6zy9ebldTFf56aEss-pm1UUA7fczBynQrBamorSSmgmeQmVk1SKyjDLSqq1IGA1rWziiBCUcjpFD-PcT92oLqQrwpc6aK9W87UaeuloyUCyE04sHlkTDjEGV_8KMKjBEbVTyRE1OKKApCBJcz9qOh2NbuqgW-Pjn1BgJvhsmP00ci49e_IuqGi8a42zPjjTK3vw_2z5BmGFcxg</recordid><startdate>20051001</startdate><enddate>20051001</enddate><creator>Coeurjolly, D.</creator><creator>Sivignon, I.</creator><creator>Dupont, F.</creator><creator>Feschet, F.</creator><creator>Chassery, J.-M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6611-4420</orcidid><orcidid>https://orcid.org/0000-0003-3164-8697</orcidid><orcidid>https://orcid.org/0000-0002-0243-2347</orcidid><orcidid>https://orcid.org/0000-0001-5178-0842</orcidid></search><sort><creationdate>20051001</creationdate><title>On digital plane preimage structure</title><author>Coeurjolly, D. ; Sivignon, I. ; Dupont, F. ; Feschet, F. ; Chassery, J.-M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-3e9b3106d6c9e63775f8cb33b7a58640be8387bc5d543aa720da3bd7752773363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computational Geometry</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Digital plane preimage</topic><topic>Digital straight line</topic><topic>Dual transformation</topic><topic>Exact sciences and technology</topic><topic>Image Processing</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Theoretical computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coeurjolly, D.</creatorcontrib><creatorcontrib>Sivignon, I.</creatorcontrib><creatorcontrib>Dupont, F.</creatorcontrib><creatorcontrib>Feschet, F.</creatorcontrib><creatorcontrib>Chassery, J.-M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coeurjolly, D.</au><au>Sivignon, I.</au><au>Dupont, F.</au><au>Feschet, F.</au><au>Chassery, J.-M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On digital plane preimage structure</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2005-10-01</date><risdate>2005</risdate><volume>151</volume><issue>1</issue><spage>78</spage><epage>92</epage><pages>78-92</pages><issn>0166-218X</issn><eissn>1872-6771</eissn><coden>DAMADU</coden><abstract>In digital geometry, digital straightness is an important concept both for practical motivations and theoretical interests. Concerning the digital straightness in dimension 2, many digital straight line characterizations exist and the digital straight segment preimage is well known. In this article, we investigate the preimage associated to digital planes. More precisely, we present first structure theorems that describe the preimage of a digital plane. Furthermore, we present a bound on the number of preimage faces under some given hypotheses.</abstract><cop>Lausanne</cop><cop>Amsterdam</cop><cop>New York, NY</cop><pub>Elsevier B.V</pub><doi>10.1016/j.dam.2005.02.022</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6611-4420</orcidid><orcidid>https://orcid.org/0000-0003-3164-8697</orcidid><orcidid>https://orcid.org/0000-0002-0243-2347</orcidid><orcidid>https://orcid.org/0000-0001-5178-0842</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0166-218X |
ispartof | Discrete Applied Mathematics, 2005-10, Vol.151 (1), p.78-92 |
issn | 0166-218X 1872-6771 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00185085v1 |
source | Elsevier |
subjects | Algorithmics. Computability. Computer arithmetics Applied sciences Artificial intelligence Computational Geometry Computer Science Computer science control theory systems Digital plane preimage Digital straight line Dual transformation Exact sciences and technology Image Processing Pattern recognition. Digital image processing. Computational geometry Theoretical computing |
title | On digital plane preimage structure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T14%3A44%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20digital%20plane%20preimage%20structure&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Coeurjolly,%20D.&rft.date=2005-10-01&rft.volume=151&rft.issue=1&rft.spage=78&rft.epage=92&rft.pages=78-92&rft.issn=0166-218X&rft.eissn=1872-6771&rft.coden=DAMADU&rft_id=info:doi/10.1016/j.dam.2005.02.022&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00185085v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-3e9b3106d6c9e63775f8cb33b7a58640be8387bc5d543aa720da3bd7752773363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |