Loading…

Microstructures in the aqueous solutions of a hybrid anionic fluorocarbon/hydrocarbon surfactant

The aqueous solutions of the anionic hybrid fluorocarbon/hydrocarbon surfactant sodium 1-oxo-1[4-(tridecafluorohexyl)phenyl]-2-hexanesulfate (FC6HC4) shows peculiar rheological behavior. At 25 °C the viscosity vs concentration curve goes successively through a maximum and a minimum, while the viscos...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2003-03, Vol.259 (2), p.382-390
Main Authors: Danino, Dganit, Weihs, Daphne, Zana, Raoul, Orädd, Greger, Lindblom, Göran, Abe, Masahiko, Talmon, Yeshayahu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aqueous solutions of the anionic hybrid fluorocarbon/hydrocarbon surfactant sodium 1-oxo-1[4-(tridecafluorohexyl)phenyl]-2-hexanesulfate (FC6HC4) shows peculiar rheological behavior. At 25 °C the viscosity vs concentration curve goes successively through a maximum and a minimum, while the viscosity vs temperature curve of the 10 wt% aqueous FC6HC4 solution goes through a marked maximum at 36 °C [Tobita et al., Langmuir 13 (1997) 5054]. In an attempt to explain these properties the microstructure of aqueous solutions of FC6HC4 has been investigated by means of digital light microscopy, transmission electron microscopy at cryogenic temperature (cryo-TEM), rheology, and self-diffusion NMR. At 20 °C, the increase of the FC6HC4 concentration was found to result in a progressive change of structure of the surfactant assemblies from mainly spherical micelles at 0.5 wt% to mainly cylindrical micelles at 10 wt%. At intermediate concentrations small disklike micelles and small complete and incomplete vesicles coexisting with cylindrical micelles were visualized. The occurrence of stretched cylindrical micelles is responsible for the effect of the surfactant concentration on the solution viscosity. Cryo-TEM, rheology, and self-diffusion NMR all suggest that an increase of the temperature brings about a growth of the assemblies present in the 10 wt% solution of FC6HC4. The structure of the assemblies present at the temperature where the viscosity is a maximum could not be elucidated by cryo-TEM because of the probable occurrence of an on-the-grid phase transformation, the result of blotting during specimen preparation. Nevertheless, the results show that the observed large assemblies break up at higher temperature to give rise to a more labile bicontinuous structure that consists of multiconnected disordered lamellae, with many folds and creases, and that may well be the L 3 phase.
ISSN:0021-9797
1095-7103
DOI:10.1016/S0021-9797(02)00079-6