Loading…
Jamming transitions in a schematic model of suspension rheology
We study the steady-state response to applied stress in a simple scalar model of sheared colloids. Our model is based on a schematic (F2) model of the glass transition, with a memory term that depends on both stress and shear rate. For suitable parameters, we find transitions from a fluid to a noner...
Saved in:
Published in: | Europhysics letters 2003-07, Vol.63 (2), p.240-246 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the steady-state response to applied stress in a simple scalar model of sheared colloids. Our model is based on a schematic (F2) model of the glass transition, with a memory term that depends on both stress and shear rate. For suitable parameters, we find transitions from a fluid to a nonergodic, jammed state, showing zero flow rate in an interval of applied stress. Although the jammed state is a glass, we predict that jamming transitions have an analytical structure distinct from that of the conventional mode-coupling glass transition. The static jamming transition we discuss is also distinct from hydrodynamic shear thickening. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/epl/i2003-00465-1 |