Loading…
Models of Density‐Dependent Genic Selection and a New Rock‐Paper‐Scissors Social System
We describe new ESS models of density regulation driven by genic selection to explain the cyclical dynamics of a social system that exhibits a rock‐paper‐scissors (RPS) set of three alternative strategies. We tracked changes in morph frequency and fitness ofLacerta viviparaand found conspicuous RPS...
Saved in:
Published in: | The American naturalist 2007-11, Vol.170 (5), p.663-680 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe new ESS models of density regulation driven by genic selection to explain the cyclical dynamics of a social system that exhibits a rock‐paper‐scissors (RPS) set of three alternative strategies. We tracked changes in morph frequency and fitness ofLacerta viviparaand found conspicuous RPS cycles. Morphs ofUtaandLacertaexhibited parallel survival‐performance trade‐offs. Frequency cycles in both species of lizards are driven by genic selection. InLacerta, frequency of each allele in adult cohorts had significant impacts on juvenile recruitment, similar to mutualistic, altruistic, and antagonistic relations of RPS alleles inUta. We constructed evolutionarily stable strategy (ESS) models in which adults impact juvenile recruitment as a function of self versus nonself color recognition. ESS models suggest that the rapid 4‐year RPS cycles exhibited byLacertaare not possible unless three factors are present: behaviors evolve that discriminate self versus nonself morphs at higher rates than random, self‐ versus non‐self‐recognition contributes to density regulation, and context‐dependent mate choice evolves in females, which choose sire genotypes to enhance progeny survival. We suggest genic selection coupled to density regulation is widespread and thus fundamental to theories of social system evolution as well as theories of population regulation in diverse animal taxa. |
---|---|
ISSN: | 0003-0147 1537-5323 |
DOI: | 10.1086/522092 |