Loading…

On the product of vector spaces in a commutative field extension

Let K ⊂ L be a commutative field extension. Given K-subspaces A , B of L, we consider the subspace 〈 A B 〉 spanned by the product set A B = { a b | a ∈ A , b ∈ B } . If dim K A = r and dim K B = s , how small can the dimension of 〈 A B 〉 be? In this paper we give a complete answer to this question i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of number theory 2009-02, Vol.129 (2), p.339-348
Main Authors: Eliahou, Shalom, Kervaire, Michel, Lecouvey, Cédric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c374t-e2ac66d7d8cf693aa015d02703e335fc3385a5fdffa10b008bbd62878b9b4b6e3
cites cdi_FETCH-LOGICAL-c374t-e2ac66d7d8cf693aa015d02703e335fc3385a5fdffa10b008bbd62878b9b4b6e3
container_end_page 348
container_issue 2
container_start_page 339
container_title Journal of number theory
container_volume 129
creator Eliahou, Shalom
Kervaire, Michel
Lecouvey, Cédric
description Let K ⊂ L be a commutative field extension. Given K-subspaces A , B of L, we consider the subspace 〈 A B 〉 spanned by the product set A B = { a b | a ∈ A , b ∈ B } . If dim K A = r and dim K B = s , how small can the dimension of 〈 A B 〉 be? In this paper we give a complete answer to this question in characteristic 0, and more generally for separable extensions. The optimal lower bound on dim K 〈 A B 〉 turns out, in this case, to be provided by the numerical function κ K , L ( r , s ) = min h ( ⌈ r / h ⌉ + ⌈ s / h ⌉ − 1 ) h , where h runs over the set of K-dimensions of all finite-dimensional intermediate fields K ⊂ H ⊂ L . This bound is closely related to one appearing in additive number theory.
doi_str_mv 10.1016/j.jnt.2008.06.004
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00259373v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022314X0800142X</els_id><sourcerecordid>oai_HAL_hal_00259373v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-e2ac66d7d8cf693aa015d02703e335fc3385a5fdffa10b008bbd62878b9b4b6e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWB8_wF22Lma8mUwyM7ixFLVCoRsFdyGTB83QTkqSDvrvTam4dHXhcr4D50PojkBJgPCHoRzGVFYAbQm8BKjP0IxAxwvCWXuOZgBVVVBSf16iqxgHAEJYw2boaT3itDF4H7w-qIS9xZNRyQcc91KZiN2IJVZ-tzskmdxksHVmq7H5SmaMzo836MLKbTS3v_cafbw8vy-WxWr9-raYrwpFmzoVppKKc93oVlneUSmBMA1VA9RQyqyitGWSWW2tJNDnGX2vedU2bd_1dc8NvUb3p96N3Ip9cDsZvoWXTiznK3H85YWsow2dSM6SU1YFH2Mw9g8gII66xCCyLnHUJYBntM7M44kxecTkTBBROTMqo13IQoT27h_6B79Ycm0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the product of vector spaces in a commutative field extension</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Eliahou, Shalom ; Kervaire, Michel ; Lecouvey, Cédric</creator><creatorcontrib>Eliahou, Shalom ; Kervaire, Michel ; Lecouvey, Cédric</creatorcontrib><description>Let K ⊂ L be a commutative field extension. Given K-subspaces A , B of L, we consider the subspace 〈 A B 〉 spanned by the product set A B = { a b | a ∈ A , b ∈ B } . If dim K A = r and dim K B = s , how small can the dimension of 〈 A B 〉 be? In this paper we give a complete answer to this question in characteristic 0, and more generally for separable extensions. The optimal lower bound on dim K 〈 A B 〉 turns out, in this case, to be provided by the numerical function κ K , L ( r , s ) = min h ( ⌈ r / h ⌉ + ⌈ s / h ⌉ − 1 ) h , where h runs over the set of K-dimensions of all finite-dimensional intermediate fields K ⊂ H ⊂ L . This bound is closely related to one appearing in additive number theory.</description><identifier>ISSN: 0022-314X</identifier><identifier>EISSN: 1096-1658</identifier><identifier>DOI: 10.1016/j.jnt.2008.06.004</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Additive number theory ; Combinatorics ; Commutative field extension ; Mathematics ; Number Theory ; Product set</subject><ispartof>Journal of number theory, 2009-02, Vol.129 (2), p.339-348</ispartof><rights>2008 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-e2ac66d7d8cf693aa015d02703e335fc3385a5fdffa10b008bbd62878b9b4b6e3</citedby><cites>FETCH-LOGICAL-c374t-e2ac66d7d8cf693aa015d02703e335fc3385a5fdffa10b008bbd62878b9b4b6e3</cites><orcidid>0000-0002-2305-6205</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00259373$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Eliahou, Shalom</creatorcontrib><creatorcontrib>Kervaire, Michel</creatorcontrib><creatorcontrib>Lecouvey, Cédric</creatorcontrib><title>On the product of vector spaces in a commutative field extension</title><title>Journal of number theory</title><description>Let K ⊂ L be a commutative field extension. Given K-subspaces A , B of L, we consider the subspace 〈 A B 〉 spanned by the product set A B = { a b | a ∈ A , b ∈ B } . If dim K A = r and dim K B = s , how small can the dimension of 〈 A B 〉 be? In this paper we give a complete answer to this question in characteristic 0, and more generally for separable extensions. The optimal lower bound on dim K 〈 A B 〉 turns out, in this case, to be provided by the numerical function κ K , L ( r , s ) = min h ( ⌈ r / h ⌉ + ⌈ s / h ⌉ − 1 ) h , where h runs over the set of K-dimensions of all finite-dimensional intermediate fields K ⊂ H ⊂ L . This bound is closely related to one appearing in additive number theory.</description><subject>Additive number theory</subject><subject>Combinatorics</subject><subject>Commutative field extension</subject><subject>Mathematics</subject><subject>Number Theory</subject><subject>Product set</subject><issn>0022-314X</issn><issn>1096-1658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWB8_wF22Lma8mUwyM7ixFLVCoRsFdyGTB83QTkqSDvrvTam4dHXhcr4D50PojkBJgPCHoRzGVFYAbQm8BKjP0IxAxwvCWXuOZgBVVVBSf16iqxgHAEJYw2boaT3itDF4H7w-qIS9xZNRyQcc91KZiN2IJVZ-tzskmdxksHVmq7H5SmaMzo836MLKbTS3v_cafbw8vy-WxWr9-raYrwpFmzoVppKKc93oVlneUSmBMA1VA9RQyqyitGWSWW2tJNDnGX2vedU2bd_1dc8NvUb3p96N3Ip9cDsZvoWXTiznK3H85YWsow2dSM6SU1YFH2Mw9g8gII66xCCyLnHUJYBntM7M44kxecTkTBBROTMqo13IQoT27h_6B79Ycm0</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Eliahou, Shalom</creator><creator>Kervaire, Michel</creator><creator>Lecouvey, Cédric</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2305-6205</orcidid></search><sort><creationdate>20090201</creationdate><title>On the product of vector spaces in a commutative field extension</title><author>Eliahou, Shalom ; Kervaire, Michel ; Lecouvey, Cédric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-e2ac66d7d8cf693aa015d02703e335fc3385a5fdffa10b008bbd62878b9b4b6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Additive number theory</topic><topic>Combinatorics</topic><topic>Commutative field extension</topic><topic>Mathematics</topic><topic>Number Theory</topic><topic>Product set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eliahou, Shalom</creatorcontrib><creatorcontrib>Kervaire, Michel</creatorcontrib><creatorcontrib>Lecouvey, Cédric</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of number theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eliahou, Shalom</au><au>Kervaire, Michel</au><au>Lecouvey, Cédric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the product of vector spaces in a commutative field extension</atitle><jtitle>Journal of number theory</jtitle><date>2009-02-01</date><risdate>2009</risdate><volume>129</volume><issue>2</issue><spage>339</spage><epage>348</epage><pages>339-348</pages><issn>0022-314X</issn><eissn>1096-1658</eissn><abstract>Let K ⊂ L be a commutative field extension. Given K-subspaces A , B of L, we consider the subspace 〈 A B 〉 spanned by the product set A B = { a b | a ∈ A , b ∈ B } . If dim K A = r and dim K B = s , how small can the dimension of 〈 A B 〉 be? In this paper we give a complete answer to this question in characteristic 0, and more generally for separable extensions. The optimal lower bound on dim K 〈 A B 〉 turns out, in this case, to be provided by the numerical function κ K , L ( r , s ) = min h ( ⌈ r / h ⌉ + ⌈ s / h ⌉ − 1 ) h , where h runs over the set of K-dimensions of all finite-dimensional intermediate fields K ⊂ H ⊂ L . This bound is closely related to one appearing in additive number theory.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jnt.2008.06.004</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2305-6205</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-314X
ispartof Journal of number theory, 2009-02, Vol.129 (2), p.339-348
issn 0022-314X
1096-1658
language eng
recordid cdi_hal_primary_oai_HAL_hal_00259373v1
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Additive number theory
Combinatorics
Commutative field extension
Mathematics
Number Theory
Product set
title On the product of vector spaces in a commutative field extension
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A21%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20product%20of%20vector%20spaces%20in%20a%20commutative%20field%20extension&rft.jtitle=Journal%20of%20number%20theory&rft.au=Eliahou,%20Shalom&rft.date=2009-02-01&rft.volume=129&rft.issue=2&rft.spage=339&rft.epage=348&rft.pages=339-348&rft.issn=0022-314X&rft.eissn=1096-1658&rft_id=info:doi/10.1016/j.jnt.2008.06.004&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00259373v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c374t-e2ac66d7d8cf693aa015d02703e335fc3385a5fdffa10b008bbd62878b9b4b6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true