Loading…
The spectrum of interacting metallic carbon nanotubes: exchange effects and universality
. The low energy spectrum of finite size metallic single-walled carbon nanotubes (SWNTs) is determined. Starting from a tight binding model for the p z electrons, we derive the low energy Hamiltonian containing all relevant scattering processes resulting from the Coulomb interaction, including the s...
Saved in:
Published in: | The European physical journal. B, Condensed matter physics Condensed matter physics, 2008-05, Vol.63 (1), p.43-58 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | .
The low energy spectrum of finite size metallic single-walled carbon nanotubes (SWNTs) is determined. Starting from a tight binding model for the p
z
electrons, we derive the low energy Hamiltonian containing
all relevant scattering processes
resulting from the Coulomb interaction, including the short ranged contributions becoming relevant for small diameter tubes. In combination with the substructure of the underlying honeycomb lattice the short ranged processes lead to various exchange effects. Using bosonization the spectrum is determined. We find that the ground state is formed by a spin 1 triplet, if 4n+2 electrons occupy the SWNT and the branch mismatch is smaller than the exchange splitting. Additionally, we calculate the excitation spectra for the different charge states and find the lifting of spin-charge separation as well as the formation of a quasi-continuum at higher excitation energies. |
---|---|
ISSN: | 1434-6028 1434-6036 |
DOI: | 10.1140/epjb/e2008-00204-0 |