Loading…

Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia

Friedreich′s ataxia is a neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. The main phenotypic features of frataxin-deficient human and yeast cells include iron accumulation in mitochondria, iron-sulphur cluster defects and high sensitivity to oxidative st...

Full description

Saved in:
Bibliographic Details
Published in:Human molecular genetics 2008-09, Vol.17 (18), p.2790-2802
Main Authors: Auchère, Françoise, Santos, Renata, Planamente, Sara, Lesuisse, Emmanuel, Camadro, Jean-Michel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c511t-feba893760d2900f100aa6623a822cc4ba7818930042ba0b4c99db54dc301c893
cites cdi_FETCH-LOGICAL-c511t-feba893760d2900f100aa6623a822cc4ba7818930042ba0b4c99db54dc301c893
container_end_page 2802
container_issue 18
container_start_page 2790
container_title Human molecular genetics
container_volume 17
creator Auchère, Françoise
Santos, Renata
Planamente, Sara
Lesuisse, Emmanuel
Camadro, Jean-Michel
description Friedreich′s ataxia is a neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. The main phenotypic features of frataxin-deficient human and yeast cells include iron accumulation in mitochondria, iron-sulphur cluster defects and high sensitivity to oxidative stress. Glutathione is a major protective agent against oxidative damage and glutathione-related systems participate in maintaining the cellular thiol/disulfide status and the reduced environment of the cell. Here, we present the first detailed biochemical study of the glutathione-dependent redox status of wild-type and frataxin-deficient cells in a yeast model of the disease. There were five times less total glutathione (GSH+GSSG) in frataxin-deficient cells, imbalanced GSH/GSSG pools and higher glutathione peroxidase activity. The pentose phosphate pathway was stimulated in frataxin-deficient cells, glucose-6-phosphate dehydrogenase activity was three times higher than in wild-type cells and this was coupled to a defect in the NADPH/NADP+ pool. Moreover, analysis of gene expression confirms the adaptative response of mutant cells to stress conditions and we bring evidence for a strong relation between the glutathione-dependent redox status of the cells and iron homeostasis. Dynamic studies show that intracellular glutathione levels reflect an adaptation of cells to iron stress conditions, and allow to distinguish constitutive stress observed in frataxin-deficient cells from the acute response of wild-type cells. In conclusion, our findings provide evidence for an impairment of glutathione homeostasis in a yeast model of Friedreich's ataxia and identify glutathione as a valuable indicator of the redox status of frataxin-deficient cells.
doi_str_mv 10.1093/hmg/ddn178
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00289734v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/hmg/ddn178</oup_id><sourcerecordid>69470281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-feba893760d2900f100aa6623a822cc4ba7818930042ba0b4c99db54dc301c893</originalsourceid><addsrcrecordid>eNqF0V1rFDEUBuAgil2rN_4AGQQVhbEn3zOXZWm7wlIVFMSbkEkybursZE1myvbfm3GWLXihV4GcJyc5eRF6juE9hpqebbY_zqztsaweoAVmAkoCFX2IFlALVooaxAl6ktINABaMysfoBFdcECbZArVX3TjoYeND70rrdq63rh-K6GzYFylXxlSEtmijHvTe95m03viJGNd1qfB9oYs7p9NQbIN13YQvo3c2Om82b1Lx55x-ih61ukvu2WE9RV8vL74sV-X649WH5fm6NBzjoWxdo6uaSgGW1AAtBtBaCEJ1RYgxrNGywhkAMNJoaJipa9twZg0FbHLhFL2d-250p3bRb3W8U0F7tTpfq2kPgFS1pOwWZ_t6trsYfo0uDWrr0zSV7l0YkxI1k1n_H-KaVZxyluHLv-BNGGOfB1YEYyLz90_d3s3IxJBSdO3xnRjUlKfKeao5z4xfHDqOzdbZe3oIMINXB6CT0V3OqTc-HR0BkSfg_N6FcffvC8vZ-TS4_VHq-FMJSSVXq2_f1Wcur68_saXi9DdklsL5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211271641</pqid></control><display><type>article</type><title>Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia</title><source>Oxford Journals Online</source><creator>Auchère, Françoise ; Santos, Renata ; Planamente, Sara ; Lesuisse, Emmanuel ; Camadro, Jean-Michel</creator><creatorcontrib>Auchère, Françoise ; Santos, Renata ; Planamente, Sara ; Lesuisse, Emmanuel ; Camadro, Jean-Michel</creatorcontrib><description>Friedreich′s ataxia is a neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. The main phenotypic features of frataxin-deficient human and yeast cells include iron accumulation in mitochondria, iron-sulphur cluster defects and high sensitivity to oxidative stress. Glutathione is a major protective agent against oxidative damage and glutathione-related systems participate in maintaining the cellular thiol/disulfide status and the reduced environment of the cell. Here, we present the first detailed biochemical study of the glutathione-dependent redox status of wild-type and frataxin-deficient cells in a yeast model of the disease. There were five times less total glutathione (GSH+GSSG) in frataxin-deficient cells, imbalanced GSH/GSSG pools and higher glutathione peroxidase activity. The pentose phosphate pathway was stimulated in frataxin-deficient cells, glucose-6-phosphate dehydrogenase activity was three times higher than in wild-type cells and this was coupled to a defect in the NADPH/NADP+ pool. Moreover, analysis of gene expression confirms the adaptative response of mutant cells to stress conditions and we bring evidence for a strong relation between the glutathione-dependent redox status of the cells and iron homeostasis. Dynamic studies show that intracellular glutathione levels reflect an adaptation of cells to iron stress conditions, and allow to distinguish constitutive stress observed in frataxin-deficient cells from the acute response of wild-type cells. In conclusion, our findings provide evidence for an impairment of glutathione homeostasis in a yeast model of Friedreich's ataxia and identify glutathione as a valuable indicator of the redox status of frataxin-deficient cells.</description><identifier>ISSN: 0964-6906</identifier><identifier>EISSN: 1460-2083</identifier><identifier>DOI: 10.1093/hmg/ddn178</identifier><identifier>PMID: 18562474</identifier><identifier>CODEN: HNGEE5</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biochemistry, Molecular Biology ; Biological and medical sciences ; Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases ; Frataxin ; Friedreich Ataxia - genetics ; Friedreich Ataxia - metabolism ; Fundamental and applied biological sciences. Psychology ; Genetics of eukaryotes. Biological and molecular evolution ; Glutathione - metabolism ; Humans ; Iron - metabolism ; Iron-Binding Proteins - genetics ; Iron-Binding Proteins - metabolism ; Life Sciences ; Medical sciences ; Molecular and cellular biology ; Molecular biology ; Neurology ; Oxidation-Reduction ; Pentose Phosphate Pathway ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sulfhydryl Compounds - metabolism</subject><ispartof>Human molecular genetics, 2008-09, Vol.17 (18), p.2790-2802</ispartof><rights>The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2008</rights><rights>2008 INIST-CNRS</rights><rights>The Author 2008. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-feba893760d2900f100aa6623a822cc4ba7818930042ba0b4c99db54dc301c893</citedby><cites>FETCH-LOGICAL-c511t-feba893760d2900f100aa6623a822cc4ba7818930042ba0b4c99db54dc301c893</cites><orcidid>0000-0002-3085-5128 ; 0000-0002-8549-2707 ; 0000-0003-4465-5079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20628155$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18562474$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00289734$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Auchère, Françoise</creatorcontrib><creatorcontrib>Santos, Renata</creatorcontrib><creatorcontrib>Planamente, Sara</creatorcontrib><creatorcontrib>Lesuisse, Emmanuel</creatorcontrib><creatorcontrib>Camadro, Jean-Michel</creatorcontrib><title>Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia</title><title>Human molecular genetics</title><addtitle>Hum Mol Genet</addtitle><description>Friedreich′s ataxia is a neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. The main phenotypic features of frataxin-deficient human and yeast cells include iron accumulation in mitochondria, iron-sulphur cluster defects and high sensitivity to oxidative stress. Glutathione is a major protective agent against oxidative damage and glutathione-related systems participate in maintaining the cellular thiol/disulfide status and the reduced environment of the cell. Here, we present the first detailed biochemical study of the glutathione-dependent redox status of wild-type and frataxin-deficient cells in a yeast model of the disease. There were five times less total glutathione (GSH+GSSG) in frataxin-deficient cells, imbalanced GSH/GSSG pools and higher glutathione peroxidase activity. The pentose phosphate pathway was stimulated in frataxin-deficient cells, glucose-6-phosphate dehydrogenase activity was three times higher than in wild-type cells and this was coupled to a defect in the NADPH/NADP+ pool. Moreover, analysis of gene expression confirms the adaptative response of mutant cells to stress conditions and we bring evidence for a strong relation between the glutathione-dependent redox status of the cells and iron homeostasis. Dynamic studies show that intracellular glutathione levels reflect an adaptation of cells to iron stress conditions, and allow to distinguish constitutive stress observed in frataxin-deficient cells from the acute response of wild-type cells. In conclusion, our findings provide evidence for an impairment of glutathione homeostasis in a yeast model of Friedreich's ataxia and identify glutathione as a valuable indicator of the redox status of frataxin-deficient cells.</description><subject>Biochemistry, Molecular Biology</subject><subject>Biological and medical sciences</subject><subject>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</subject><subject>Frataxin</subject><subject>Friedreich Ataxia - genetics</subject><subject>Friedreich Ataxia - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Glutathione - metabolism</subject><subject>Humans</subject><subject>Iron - metabolism</subject><subject>Iron-Binding Proteins - genetics</subject><subject>Iron-Binding Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Medical sciences</subject><subject>Molecular and cellular biology</subject><subject>Molecular biology</subject><subject>Neurology</subject><subject>Oxidation-Reduction</subject><subject>Pentose Phosphate Pathway</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sulfhydryl Compounds - metabolism</subject><issn>0964-6906</issn><issn>1460-2083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqF0V1rFDEUBuAgil2rN_4AGQQVhbEn3zOXZWm7wlIVFMSbkEkybursZE1myvbfm3GWLXihV4GcJyc5eRF6juE9hpqebbY_zqztsaweoAVmAkoCFX2IFlALVooaxAl6ktINABaMysfoBFdcECbZArVX3TjoYeND70rrdq63rh-K6GzYFylXxlSEtmijHvTe95m03viJGNd1qfB9oYs7p9NQbIN13YQvo3c2Om82b1Lx55x-ih61ukvu2WE9RV8vL74sV-X649WH5fm6NBzjoWxdo6uaSgGW1AAtBtBaCEJ1RYgxrNGywhkAMNJoaJipa9twZg0FbHLhFL2d-250p3bRb3W8U0F7tTpfq2kPgFS1pOwWZ_t6trsYfo0uDWrr0zSV7l0YkxI1k1n_H-KaVZxyluHLv-BNGGOfB1YEYyLz90_d3s3IxJBSdO3xnRjUlKfKeao5z4xfHDqOzdbZe3oIMINXB6CT0V3OqTc-HR0BkSfg_N6FcffvC8vZ-TS4_VHq-FMJSSVXq2_f1Wcur68_saXi9DdklsL5</recordid><startdate>20080915</startdate><enddate>20080915</enddate><creator>Auchère, Françoise</creator><creator>Santos, Renata</creator><creator>Planamente, Sara</creator><creator>Lesuisse, Emmanuel</creator><creator>Camadro, Jean-Michel</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><general>Oxford University Press (OUP)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>M7N</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3085-5128</orcidid><orcidid>https://orcid.org/0000-0002-8549-2707</orcidid><orcidid>https://orcid.org/0000-0003-4465-5079</orcidid></search><sort><creationdate>20080915</creationdate><title>Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia</title><author>Auchère, Françoise ; Santos, Renata ; Planamente, Sara ; Lesuisse, Emmanuel ; Camadro, Jean-Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-feba893760d2900f100aa6623a822cc4ba7818930042ba0b4c99db54dc301c893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Biological and medical sciences</topic><topic>Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases</topic><topic>Frataxin</topic><topic>Friedreich Ataxia - genetics</topic><topic>Friedreich Ataxia - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Glutathione - metabolism</topic><topic>Humans</topic><topic>Iron - metabolism</topic><topic>Iron-Binding Proteins - genetics</topic><topic>Iron-Binding Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Medical sciences</topic><topic>Molecular and cellular biology</topic><topic>Molecular biology</topic><topic>Neurology</topic><topic>Oxidation-Reduction</topic><topic>Pentose Phosphate Pathway</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sulfhydryl Compounds - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Auchère, Françoise</creatorcontrib><creatorcontrib>Santos, Renata</creatorcontrib><creatorcontrib>Planamente, Sara</creatorcontrib><creatorcontrib>Lesuisse, Emmanuel</creatorcontrib><creatorcontrib>Camadro, Jean-Michel</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Human molecular genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Auchère, Françoise</au><au>Santos, Renata</au><au>Planamente, Sara</au><au>Lesuisse, Emmanuel</au><au>Camadro, Jean-Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia</atitle><jtitle>Human molecular genetics</jtitle><addtitle>Hum Mol Genet</addtitle><date>2008-09-15</date><risdate>2008</risdate><volume>17</volume><issue>18</issue><spage>2790</spage><epage>2802</epage><pages>2790-2802</pages><issn>0964-6906</issn><eissn>1460-2083</eissn><coden>HNGEE5</coden><abstract>Friedreich′s ataxia is a neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. The main phenotypic features of frataxin-deficient human and yeast cells include iron accumulation in mitochondria, iron-sulphur cluster defects and high sensitivity to oxidative stress. Glutathione is a major protective agent against oxidative damage and glutathione-related systems participate in maintaining the cellular thiol/disulfide status and the reduced environment of the cell. Here, we present the first detailed biochemical study of the glutathione-dependent redox status of wild-type and frataxin-deficient cells in a yeast model of the disease. There were five times less total glutathione (GSH+GSSG) in frataxin-deficient cells, imbalanced GSH/GSSG pools and higher glutathione peroxidase activity. The pentose phosphate pathway was stimulated in frataxin-deficient cells, glucose-6-phosphate dehydrogenase activity was three times higher than in wild-type cells and this was coupled to a defect in the NADPH/NADP+ pool. Moreover, analysis of gene expression confirms the adaptative response of mutant cells to stress conditions and we bring evidence for a strong relation between the glutathione-dependent redox status of the cells and iron homeostasis. Dynamic studies show that intracellular glutathione levels reflect an adaptation of cells to iron stress conditions, and allow to distinguish constitutive stress observed in frataxin-deficient cells from the acute response of wild-type cells. In conclusion, our findings provide evidence for an impairment of glutathione homeostasis in a yeast model of Friedreich's ataxia and identify glutathione as a valuable indicator of the redox status of frataxin-deficient cells.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>18562474</pmid><doi>10.1093/hmg/ddn178</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3085-5128</orcidid><orcidid>https://orcid.org/0000-0002-8549-2707</orcidid><orcidid>https://orcid.org/0000-0003-4465-5079</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0964-6906
ispartof Human molecular genetics, 2008-09, Vol.17 (18), p.2790-2802
issn 0964-6906
1460-2083
language eng
recordid cdi_hal_primary_oai_HAL_hal_00289734v1
source Oxford Journals Online
subjects Biochemistry, Molecular Biology
Biological and medical sciences
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Frataxin
Friedreich Ataxia - genetics
Friedreich Ataxia - metabolism
Fundamental and applied biological sciences. Psychology
Genetics of eukaryotes. Biological and molecular evolution
Glutathione - metabolism
Humans
Iron - metabolism
Iron-Binding Proteins - genetics
Iron-Binding Proteins - metabolism
Life Sciences
Medical sciences
Molecular and cellular biology
Molecular biology
Neurology
Oxidation-Reduction
Pentose Phosphate Pathway
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sulfhydryl Compounds - metabolism
title Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glutathione-dependent%20redox%20status%20of%20frataxin-deficient%20cells%20in%20a%20yeast%20model%20of%20Friedreich's%20ataxia&rft.jtitle=Human%20molecular%20genetics&rft.au=Auch%C3%A8re,%20Fran%C3%A7oise&rft.date=2008-09-15&rft.volume=17&rft.issue=18&rft.spage=2790&rft.epage=2802&rft.pages=2790-2802&rft.issn=0964-6906&rft.eissn=1460-2083&rft.coden=HNGEE5&rft_id=info:doi/10.1093/hmg/ddn178&rft_dat=%3Cproquest_hal_p%3E69470281%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-feba893760d2900f100aa6623a822cc4ba7818930042ba0b4c99db54dc301c893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=211271641&rft_id=info:pmid/18562474&rft_oup_id=10.1093/hmg/ddn178&rfr_iscdi=true