Loading…

Influence of the mass ratio on viscosity in Lennard–Jones mixtures: The one-fluid model revisited using nonequilibrium molecular dynamics

In the frame of the law of the corresponding states, a systematic study of the influence on viscosity of the mass ratio in mixtures has been performed. To achieve such a goal, the viscosity of Lennard–Jones binary, ternary and 10-components mixtures in various thermodynamic states, and for various m...

Full description

Saved in:
Bibliographic Details
Published in:Fluid phase equilibria 2005-07, Vol.234 (1), p.56-63
Main Authors: Galliéro, Guillaume, Boned, Christian, Baylaucq, Antoine, Montel, François
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-daabad741ba929735ef03cee27c2384cd7efffa2ba71f79b7af82df3005f02cf3
cites cdi_FETCH-LOGICAL-c398t-daabad741ba929735ef03cee27c2384cd7efffa2ba71f79b7af82df3005f02cf3
container_end_page 63
container_issue 1
container_start_page 56
container_title Fluid phase equilibria
container_volume 234
creator Galliéro, Guillaume
Boned, Christian
Baylaucq, Antoine
Montel, François
description In the frame of the law of the corresponding states, a systematic study of the influence on viscosity of the mass ratio in mixtures has been performed. To achieve such a goal, the viscosity of Lennard–Jones binary, ternary and 10-components mixtures in various thermodynamic states, and for various molar fractions, has been evaluated thanks to nonequilibrium molecular dynamics simulations. To focus on the mass ratio effect alone, the components in the Lennard–Jones mixtures differ only in mass. It is shown that none of the tested one-fluid models for mass is able to provide an accurate estimation of the mixture viscosities. It has been found that the mass of the pseudo-compound equivalent to the mixture in the one-fluid approximation for viscosity is density dependent and weakly temperature dependent. A purely empirical density dependent model (adjusted on equimolar results) is proposed. This model provides results consistent with direct simulations on mixtures as well as with results for the zero-density systems, the deviations being in all cases smaller than 3%.
doi_str_mv 10.1016/j.fluid.2005.05.016
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00289852v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378381205001834</els_id><sourcerecordid>28567137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-daabad741ba929735ef03cee27c2384cd7efffa2ba71f79b7af82df3005f02cf3</originalsourceid><addsrcrecordid>eNp9kU9rFTEUxQdR8Nn6Cdxko-BinvnzZjIjuCil2soDN3Ud7iQ3No9M0iYzD9_OfZd-Qz-Jmb6iu8KFwOV3Ti7nVNUbRteMsvbDbm397MyaU9qsl2Hts2rFOtnXlPPN82pFhexq0TH-snqV845SypqWr6r7q1CkGDSSaMl0g2SEnEmCyUUSA9m7rGN204G4QLYYAiTz59fvrzFgJqP7Oc0J80dyXYRlVT-cQcZo0JOERewmNGTOLvwgoQB3s_NuSG4eC-RRzx4SMYcAo9P5tHphwWd8_fieVN8_X1yfX9bbb1-uzs-2tRZ9N9UGYAAjN2yAnvdSNGip0Ihcai66jTYSrbXAB5DMyn6QYDturCjZWMq1FSfV-6PvDXh1m9wI6aAiOHV5tlXLjlLe9V3D96yw747sbYp3M-ZJjSUR9B4Cxjkr3jWtZEIWUBxBnWLOCe0_Z0bVUpLaqYd01FKSWoa1RfX20R6yBm8TBO3yf2nb9-WUvnCfjhyWXPYOk8raLa0Zl1BPykT35D9_AepgrZk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28567137</pqid></control><display><type>article</type><title>Influence of the mass ratio on viscosity in Lennard–Jones mixtures: The one-fluid model revisited using nonequilibrium molecular dynamics</title><source>ScienceDirect Journals</source><creator>Galliéro, Guillaume ; Boned, Christian ; Baylaucq, Antoine ; Montel, François</creator><creatorcontrib>Galliéro, Guillaume ; Boned, Christian ; Baylaucq, Antoine ; Montel, François</creatorcontrib><description>In the frame of the law of the corresponding states, a systematic study of the influence on viscosity of the mass ratio in mixtures has been performed. To achieve such a goal, the viscosity of Lennard–Jones binary, ternary and 10-components mixtures in various thermodynamic states, and for various molar fractions, has been evaluated thanks to nonequilibrium molecular dynamics simulations. To focus on the mass ratio effect alone, the components in the Lennard–Jones mixtures differ only in mass. It is shown that none of the tested one-fluid models for mass is able to provide an accurate estimation of the mixture viscosities. It has been found that the mass of the pseudo-compound equivalent to the mixture in the one-fluid approximation for viscosity is density dependent and weakly temperature dependent. A purely empirical density dependent model (adjusted on equimolar results) is proposed. This model provides results consistent with direct simulations on mixtures as well as with results for the zero-density systems, the deviations being in all cases smaller than 3%.</description><identifier>ISSN: 0378-3812</identifier><identifier>EISSN: 1879-0224</identifier><identifier>DOI: 10.1016/j.fluid.2005.05.016</identifier><identifier>CODEN: FPEQDT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical Physics ; Chemical thermodynamics ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; General. Theory ; Lennard–Jones ; Mixture ; Nonequilibrium molecular dynamics ; One-fluid approximation ; Physics ; Viscosity</subject><ispartof>Fluid phase equilibria, 2005-07, Vol.234 (1), p.56-63</ispartof><rights>2005 Elsevier B.V.</rights><rights>2005 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-daabad741ba929735ef03cee27c2384cd7efffa2ba71f79b7af82df3005f02cf3</citedby><cites>FETCH-LOGICAL-c398t-daabad741ba929735ef03cee27c2384cd7efffa2ba71f79b7af82df3005f02cf3</cites><orcidid>0000-0001-6393-8387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16992899$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00289852$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Galliéro, Guillaume</creatorcontrib><creatorcontrib>Boned, Christian</creatorcontrib><creatorcontrib>Baylaucq, Antoine</creatorcontrib><creatorcontrib>Montel, François</creatorcontrib><title>Influence of the mass ratio on viscosity in Lennard–Jones mixtures: The one-fluid model revisited using nonequilibrium molecular dynamics</title><title>Fluid phase equilibria</title><description>In the frame of the law of the corresponding states, a systematic study of the influence on viscosity of the mass ratio in mixtures has been performed. To achieve such a goal, the viscosity of Lennard–Jones binary, ternary and 10-components mixtures in various thermodynamic states, and for various molar fractions, has been evaluated thanks to nonequilibrium molecular dynamics simulations. To focus on the mass ratio effect alone, the components in the Lennard–Jones mixtures differ only in mass. It is shown that none of the tested one-fluid models for mass is able to provide an accurate estimation of the mixture viscosities. It has been found that the mass of the pseudo-compound equivalent to the mixture in the one-fluid approximation for viscosity is density dependent and weakly temperature dependent. A purely empirical density dependent model (adjusted on equimolar results) is proposed. This model provides results consistent with direct simulations on mixtures as well as with results for the zero-density systems, the deviations being in all cases smaller than 3%.</description><subject>Chemical Physics</subject><subject>Chemical thermodynamics</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>General. Theory</subject><subject>Lennard–Jones</subject><subject>Mixture</subject><subject>Nonequilibrium molecular dynamics</subject><subject>One-fluid approximation</subject><subject>Physics</subject><subject>Viscosity</subject><issn>0378-3812</issn><issn>1879-0224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kU9rFTEUxQdR8Nn6Cdxko-BinvnzZjIjuCil2soDN3Ud7iQ3No9M0iYzD9_OfZd-Qz-Jmb6iu8KFwOV3Ti7nVNUbRteMsvbDbm397MyaU9qsl2Hts2rFOtnXlPPN82pFhexq0TH-snqV845SypqWr6r7q1CkGDSSaMl0g2SEnEmCyUUSA9m7rGN204G4QLYYAiTz59fvrzFgJqP7Oc0J80dyXYRlVT-cQcZo0JOERewmNGTOLvwgoQB3s_NuSG4eC-RRzx4SMYcAo9P5tHphwWd8_fieVN8_X1yfX9bbb1-uzs-2tRZ9N9UGYAAjN2yAnvdSNGip0Ihcai66jTYSrbXAB5DMyn6QYDturCjZWMq1FSfV-6PvDXh1m9wI6aAiOHV5tlXLjlLe9V3D96yw747sbYp3M-ZJjSUR9B4Cxjkr3jWtZEIWUBxBnWLOCe0_Z0bVUpLaqYd01FKSWoa1RfX20R6yBm8TBO3yf2nb9-WUvnCfjhyWXPYOk8raLa0Zl1BPykT35D9_AepgrZk</recordid><startdate>20050728</startdate><enddate>20050728</enddate><creator>Galliéro, Guillaume</creator><creator>Boned, Christian</creator><creator>Baylaucq, Antoine</creator><creator>Montel, François</creator><general>Elsevier B.V</general><general>Elsevier Science</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6393-8387</orcidid></search><sort><creationdate>20050728</creationdate><title>Influence of the mass ratio on viscosity in Lennard–Jones mixtures: The one-fluid model revisited using nonequilibrium molecular dynamics</title><author>Galliéro, Guillaume ; Boned, Christian ; Baylaucq, Antoine ; Montel, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-daabad741ba929735ef03cee27c2384cd7efffa2ba71f79b7af82df3005f02cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Chemical Physics</topic><topic>Chemical thermodynamics</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>General. Theory</topic><topic>Lennard–Jones</topic><topic>Mixture</topic><topic>Nonequilibrium molecular dynamics</topic><topic>One-fluid approximation</topic><topic>Physics</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galliéro, Guillaume</creatorcontrib><creatorcontrib>Boned, Christian</creatorcontrib><creatorcontrib>Baylaucq, Antoine</creatorcontrib><creatorcontrib>Montel, François</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Fluid phase equilibria</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galliéro, Guillaume</au><au>Boned, Christian</au><au>Baylaucq, Antoine</au><au>Montel, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of the mass ratio on viscosity in Lennard–Jones mixtures: The one-fluid model revisited using nonequilibrium molecular dynamics</atitle><jtitle>Fluid phase equilibria</jtitle><date>2005-07-28</date><risdate>2005</risdate><volume>234</volume><issue>1</issue><spage>56</spage><epage>63</epage><pages>56-63</pages><issn>0378-3812</issn><eissn>1879-0224</eissn><coden>FPEQDT</coden><abstract>In the frame of the law of the corresponding states, a systematic study of the influence on viscosity of the mass ratio in mixtures has been performed. To achieve such a goal, the viscosity of Lennard–Jones binary, ternary and 10-components mixtures in various thermodynamic states, and for various molar fractions, has been evaluated thanks to nonequilibrium molecular dynamics simulations. To focus on the mass ratio effect alone, the components in the Lennard–Jones mixtures differ only in mass. It is shown that none of the tested one-fluid models for mass is able to provide an accurate estimation of the mixture viscosities. It has been found that the mass of the pseudo-compound equivalent to the mixture in the one-fluid approximation for viscosity is density dependent and weakly temperature dependent. A purely empirical density dependent model (adjusted on equimolar results) is proposed. This model provides results consistent with direct simulations on mixtures as well as with results for the zero-density systems, the deviations being in all cases smaller than 3%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.fluid.2005.05.016</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6393-8387</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0378-3812
ispartof Fluid phase equilibria, 2005-07, Vol.234 (1), p.56-63
issn 0378-3812
1879-0224
language eng
recordid cdi_hal_primary_oai_HAL_hal_00289852v1
source ScienceDirect Journals
subjects Chemical Physics
Chemical thermodynamics
Chemistry
Exact sciences and technology
General and physical chemistry
General. Theory
Lennard–Jones
Mixture
Nonequilibrium molecular dynamics
One-fluid approximation
Physics
Viscosity
title Influence of the mass ratio on viscosity in Lennard–Jones mixtures: The one-fluid model revisited using nonequilibrium molecular dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A45%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20the%20mass%20ratio%20on%20viscosity%20in%20Lennard%E2%80%93Jones%20mixtures:%20The%20one-fluid%20model%20revisited%20using%20nonequilibrium%20molecular%20dynamics&rft.jtitle=Fluid%20phase%20equilibria&rft.au=Galli%C3%A9ro,%20Guillaume&rft.date=2005-07-28&rft.volume=234&rft.issue=1&rft.spage=56&rft.epage=63&rft.pages=56-63&rft.issn=0378-3812&rft.eissn=1879-0224&rft.coden=FPEQDT&rft_id=info:doi/10.1016/j.fluid.2005.05.016&rft_dat=%3Cproquest_hal_p%3E28567137%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-daabad741ba929735ef03cee27c2384cd7efffa2ba71f79b7af82df3005f02cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28567137&rft_id=info:pmid/&rfr_iscdi=true