Loading…
Effect of magnesium doping on the orbital and magnetic order in LiNiO2
In LiNiO2, the Ni3+ ions, with S=1/2 and twofold orbital degeneracy, are arranged on a trian- gular lattice. Using muon spin relaxation (MuSR) and electron spin resonance (ESR), we show that magnesium doping does not stabilize any magnetic or orbital order, despite the absence of interplane Ni2+. A...
Saved in:
Published in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2008-09, Vol.78 (10) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In LiNiO2, the Ni3+ ions, with S=1/2 and twofold orbital degeneracy, are arranged on a trian- gular lattice. Using muon spin relaxation (MuSR) and electron spin resonance (ESR), we show that magnesium doping does not stabilize any magnetic or orbital order, despite the absence of interplane Ni2+. A disordered, slowly fluctuating state develops below 12 K. In addition, we find that magnons are excited on the time scale of the ESR experiment. At the same time, a g factor anisotropy is observed, in agreement with $\vert 3z^{2}-r^{2}\rangle$ orbital occupancy. |
---|---|
ISSN: | 1098-0121 1550-235X |
DOI: | 10.1103/PhysRevB.78.104409 |