Loading…
Dual Activation of the Drosophila Toll Pathway by Two Pattern Recognition Receptors
The Toll-dependent defense against Gram-positive bacterial infections in Drosophila is mediated through the peptidoglycan recognition protein SA (PGRP-SA). A mutation termed osiris disrupts the Gram-negative binding protein 1 (GNBP1) gene and leads to compromised survival of mutant flies after Gram-...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2003-12, Vol.302 (5653), p.2126-2130 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Toll-dependent defense against Gram-positive bacterial infections in Drosophila is mediated through the peptidoglycan recognition protein SA (PGRP-SA). A mutation termed osiris disrupts the Gram-negative binding protein 1 (GNBP1) gene and leads to compromised survival of mutant flies after Gram-positive infections, but not after fungal or Gram-negative bacterial challenge. Our results demonstrate that GNBP1 and PGRP-SA can jointly activate the Toll pathway. The potential for a combination of distinct proteins to mediate detection of infectious nonself in the fly will refine the concept of pattern recognition in insects. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.1085432 |