Loading…
Contact analysis of a flexible bladed-rotor
This paper presents a model of fully flexible bladed rotor developed in the rotating frame. An energetic method is used to obtain the matrix equations of the dynamic behaviour of the system. The gyroscopic effects as well as the spin softening effects and the centrifugal stiffening effects, taken in...
Saved in:
Published in: | European journal of mechanics, A, Solids A, Solids, 2007-05, Vol.26 (3), p.541-557 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a model of fully flexible bladed rotor developed in the rotating frame. An energetic method is used to obtain the matrix equations of the dynamic behaviour of the system. The gyroscopic effects as well as the spin softening effects and the centrifugal stiffening effects, taken into account through a pre-stressed potential, are included in the model. In the rotating frame, the eigenvalues' imaginary parts of the latter matrix equation give the Campbell diagram of the system and its stability can be analysed through its associated eigenvalues' real parts. The turbo machine casing is also modelled by an elastic ring in the rotating frame through an energetic method. Thus, in some rotational speed ranges the contact problem between the rotor and the stator can be treated as a static problem since both structures are stationary to each other. Prior to the study of the complete problem of contact between the flexible blades of the rotor and the flexible casing, a simple model of an elastic ring having only one mode shape, excited by rotating loads is developed in the rotating frame too, in order to underline divergence instabilities and mode couplings. Then, the complete problem of frictionless sliding contact between the blades and the casing, without rubbing, is studied. The stable balanced static contact configurations of the structure are found as function of the rotational speed of the rotor. Finally, the results are compared to these of the simple model of rotating spring-masses on an elastic ring, showing good adequacy. The present model of rotor appears thus particularly adapted to the study of blades-casing contacts and highlighted an unstable phenomenon near the stator critical speed even in case of frictionless sliding. |
---|---|
ISSN: | 0997-7538 1873-7285 |
DOI: | 10.1016/j.euromechsol.2006.11.002 |