Loading…

Solutions for a quasilinear Schrödinger equation: a dual approach

We consider quasilinear stationary Schrödinger equations of the form (1) − Δu− Δ(u 2)u=g(x,u), x∈ R N. Introducing a change of unknown, we transform the search of solutions u( x) of (1) into the search of solutions v( x) of the semilinear equation (2) − Δv= 1 1+2f 2(v) g(x,f(v)), x∈ R N, where f is...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis 2004, Vol.56 (2), p.213-226
Main Authors: Colin, Mathieu, Jeanjean, Louis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c422t-84de4f5d87ed7685d09342d42d47a6f16725c62f9474034ecaf69d902904a6a33
cites cdi_FETCH-LOGICAL-c422t-84de4f5d87ed7685d09342d42d47a6f16725c62f9474034ecaf69d902904a6a33
container_end_page 226
container_issue 2
container_start_page 213
container_title Nonlinear analysis
container_volume 56
creator Colin, Mathieu
Jeanjean, Louis
description We consider quasilinear stationary Schrödinger equations of the form (1) − Δu− Δ(u 2)u=g(x,u), x∈ R N. Introducing a change of unknown, we transform the search of solutions u( x) of (1) into the search of solutions v( x) of the semilinear equation (2) − Δv= 1 1+2f 2(v) g(x,f(v)), x∈ R N, where f is suitably chosen. If v is a classical solution of (2) then u= f( v) is a classical solution of (1). Variational methods are then used to obtain various existence results.
doi_str_mv 10.1016/j.na.2003.09.008
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00338539v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X0300350X</els_id><sourcerecordid>oai_HAL_hal_00338539v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-84de4f5d87ed7685d09342d42d47a6f16725c62f9474034ecaf69d902904a6a33</originalsourceid><addsrcrecordid>eNp1kM1Kw0AQgBdRsFbvHnPx4CFx9iebpLcqaoWChyp4W4bdjd0Sk7jbFnwxX8AXc0NET8LAwMz3zTBDyDmFjAKVV5usxYwB8AyqDKA8IBNaFjzNGc0PyQS4ZGku5MsxOQlhAwC04HJCrldds9u6rg1J3fkEk_cdBte41qJPVnrtvz6Na1-tT2zsDOAsQmaHTYJ97zvU61NyVGMT7NlPnpLnu9unm0W6fLx_uJkvUy0Y26alMFbUuSkLawpZ5gYqLpgZokBZU1mwXEtWV6IQwIXVWMvKVMAqECiR8ym5HOeusVG9d2_oP1SHTi3mSzXU4vG8zHm1p5GFkdW-C8Hb-legoIZ_qY1qUQ3_UlBFs4zKxaj0GDQ2tcdWu_DnxcEFpRC52cjZeOveWa-CdrbV1jhv9VaZzv2_5BsgTn4m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solutions for a quasilinear Schrödinger equation: a dual approach</title><source>Elsevier</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Colin, Mathieu ; Jeanjean, Louis</creator><creatorcontrib>Colin, Mathieu ; Jeanjean, Louis</creatorcontrib><description>We consider quasilinear stationary Schrödinger equations of the form (1) − Δu− Δ(u 2)u=g(x,u), x∈ R N. Introducing a change of unknown, we transform the search of solutions u( x) of (1) into the search of solutions v( x) of the semilinear equation (2) − Δv= 1 1+2f 2(v) g(x,f(v)), x∈ R N, where f is suitably chosen. If v is a classical solution of (2) then u= f( v) is a classical solution of (1). Variational methods are then used to obtain various existence results.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2003.09.008</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Analysis of PDEs ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematics ; Minimax methods ; Partial differential equations ; Quasilinear Schrödinger equations ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Nonlinear analysis, 2004, Vol.56 (2), p.213-226</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-84de4f5d87ed7685d09342d42d47a6f16725c62f9474034ecaf69d902904a6a33</citedby><cites>FETCH-LOGICAL-c422t-84de4f5d87ed7685d09342d42d47a6f16725c62f9474034ecaf69d902904a6a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X0300350X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3563,4023,27922,27923,27924,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=15397110$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00338539$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Colin, Mathieu</creatorcontrib><creatorcontrib>Jeanjean, Louis</creatorcontrib><title>Solutions for a quasilinear Schrödinger equation: a dual approach</title><title>Nonlinear analysis</title><description>We consider quasilinear stationary Schrödinger equations of the form (1) − Δu− Δ(u 2)u=g(x,u), x∈ R N. Introducing a change of unknown, we transform the search of solutions u( x) of (1) into the search of solutions v( x) of the semilinear equation (2) − Δv= 1 1+2f 2(v) g(x,f(v)), x∈ R N, where f is suitably chosen. If v is a classical solution of (2) then u= f( v) is a classical solution of (1). Variational methods are then used to obtain various existence results.</description><subject>Analysis of PDEs</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Minimax methods</subject><subject>Partial differential equations</subject><subject>Quasilinear Schrödinger equations</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AQgBdRsFbvHnPx4CFx9iebpLcqaoWChyp4W4bdjd0Sk7jbFnwxX8AXc0NET8LAwMz3zTBDyDmFjAKVV5usxYwB8AyqDKA8IBNaFjzNGc0PyQS4ZGku5MsxOQlhAwC04HJCrldds9u6rg1J3fkEk_cdBte41qJPVnrtvz6Na1-tT2zsDOAsQmaHTYJ97zvU61NyVGMT7NlPnpLnu9unm0W6fLx_uJkvUy0Y26alMFbUuSkLawpZ5gYqLpgZokBZU1mwXEtWV6IQwIXVWMvKVMAqECiR8ym5HOeusVG9d2_oP1SHTi3mSzXU4vG8zHm1p5GFkdW-C8Hb-legoIZ_qY1qUQ3_UlBFs4zKxaj0GDQ2tcdWu_DnxcEFpRC52cjZeOveWa-CdrbV1jhv9VaZzv2_5BsgTn4m</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Colin, Mathieu</creator><creator>Jeanjean, Louis</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>2004</creationdate><title>Solutions for a quasilinear Schrödinger equation: a dual approach</title><author>Colin, Mathieu ; Jeanjean, Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-84de4f5d87ed7685d09342d42d47a6f16725c62f9474034ecaf69d902904a6a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analysis of PDEs</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Minimax methods</topic><topic>Partial differential equations</topic><topic>Quasilinear Schrödinger equations</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colin, Mathieu</creatorcontrib><creatorcontrib>Jeanjean, Louis</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colin, Mathieu</au><au>Jeanjean, Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solutions for a quasilinear Schrödinger equation: a dual approach</atitle><jtitle>Nonlinear analysis</jtitle><date>2004</date><risdate>2004</risdate><volume>56</volume><issue>2</issue><spage>213</spage><epage>226</epage><pages>213-226</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>We consider quasilinear stationary Schrödinger equations of the form (1) − Δu− Δ(u 2)u=g(x,u), x∈ R N. Introducing a change of unknown, we transform the search of solutions u( x) of (1) into the search of solutions v( x) of the semilinear equation (2) − Δv= 1 1+2f 2(v) g(x,f(v)), x∈ R N, where f is suitably chosen. If v is a classical solution of (2) then u= f( v) is a classical solution of (1). Variational methods are then used to obtain various existence results.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2003.09.008</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2004, Vol.56 (2), p.213-226
issn 0362-546X
1873-5215
language eng
recordid cdi_hal_primary_oai_HAL_hal_00338539v1
source Elsevier; Backfile Package - Mathematics (Legacy) [YMT]
subjects Analysis of PDEs
Exact sciences and technology
Global analysis, analysis on manifolds
Mathematical analysis
Mathematics
Minimax methods
Partial differential equations
Quasilinear Schrödinger equations
Sciences and techniques of general use
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
title Solutions for a quasilinear Schrödinger equation: a dual approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solutions%20for%20a%20quasilinear%20Schr%C3%B6dinger%20equation:%20a%20dual%20approach&rft.jtitle=Nonlinear%20analysis&rft.au=Colin,%20Mathieu&rft.date=2004&rft.volume=56&rft.issue=2&rft.spage=213&rft.epage=226&rft.pages=213-226&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2003.09.008&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00338539v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-84de4f5d87ed7685d09342d42d47a6f16725c62f9474034ecaf69d902904a6a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true