Loading…
Solutions for a quasilinear Schrödinger equation: a dual approach
We consider quasilinear stationary Schrödinger equations of the form (1) − Δu− Δ(u 2)u=g(x,u), x∈ R N. Introducing a change of unknown, we transform the search of solutions u( x) of (1) into the search of solutions v( x) of the semilinear equation (2) − Δv= 1 1+2f 2(v) g(x,f(v)), x∈ R N, where f is...
Saved in:
Published in: | Nonlinear analysis 2004, Vol.56 (2), p.213-226 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c422t-84de4f5d87ed7685d09342d42d47a6f16725c62f9474034ecaf69d902904a6a33 |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-84de4f5d87ed7685d09342d42d47a6f16725c62f9474034ecaf69d902904a6a33 |
container_end_page | 226 |
container_issue | 2 |
container_start_page | 213 |
container_title | Nonlinear analysis |
container_volume | 56 |
creator | Colin, Mathieu Jeanjean, Louis |
description | We consider quasilinear stationary Schrödinger equations of the form
(1)
−
Δu−
Δ(u
2)u=g(x,u),
x∈
R
N.
Introducing a change of unknown, we transform the search of solutions
u(
x) of (1) into the search of solutions
v(
x) of the semilinear equation
(2)
−
Δv=
1
1+2f
2(v)
g(x,f(v)),
x∈
R
N,
where
f is suitably chosen. If
v is a classical solution of (2) then
u=
f(
v) is a classical solution of (1). Variational methods are then used to obtain various existence results. |
doi_str_mv | 10.1016/j.na.2003.09.008 |
format | article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00338539v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X0300350X</els_id><sourcerecordid>oai_HAL_hal_00338539v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-84de4f5d87ed7685d09342d42d47a6f16725c62f9474034ecaf69d902904a6a33</originalsourceid><addsrcrecordid>eNp1kM1Kw0AQgBdRsFbvHnPx4CFx9iebpLcqaoWChyp4W4bdjd0Sk7jbFnwxX8AXc0NET8LAwMz3zTBDyDmFjAKVV5usxYwB8AyqDKA8IBNaFjzNGc0PyQS4ZGku5MsxOQlhAwC04HJCrldds9u6rg1J3fkEk_cdBte41qJPVnrtvz6Na1-tT2zsDOAsQmaHTYJ97zvU61NyVGMT7NlPnpLnu9unm0W6fLx_uJkvUy0Y26alMFbUuSkLawpZ5gYqLpgZokBZU1mwXEtWV6IQwIXVWMvKVMAqECiR8ym5HOeusVG9d2_oP1SHTi3mSzXU4vG8zHm1p5GFkdW-C8Hb-legoIZ_qY1qUQ3_UlBFs4zKxaj0GDQ2tcdWu_DnxcEFpRC52cjZeOveWa-CdrbV1jhv9VaZzv2_5BsgTn4m</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solutions for a quasilinear Schrödinger equation: a dual approach</title><source>Elsevier</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Colin, Mathieu ; Jeanjean, Louis</creator><creatorcontrib>Colin, Mathieu ; Jeanjean, Louis</creatorcontrib><description>We consider quasilinear stationary Schrödinger equations of the form
(1)
−
Δu−
Δ(u
2)u=g(x,u),
x∈
R
N.
Introducing a change of unknown, we transform the search of solutions
u(
x) of (1) into the search of solutions
v(
x) of the semilinear equation
(2)
−
Δv=
1
1+2f
2(v)
g(x,f(v)),
x∈
R
N,
where
f is suitably chosen. If
v is a classical solution of (2) then
u=
f(
v) is a classical solution of (1). Variational methods are then used to obtain various existence results.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2003.09.008</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Analysis of PDEs ; Exact sciences and technology ; Global analysis, analysis on manifolds ; Mathematical analysis ; Mathematics ; Minimax methods ; Partial differential equations ; Quasilinear Schrödinger equations ; Sciences and techniques of general use ; Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><ispartof>Nonlinear analysis, 2004, Vol.56 (2), p.213-226</ispartof><rights>2003 Elsevier Ltd</rights><rights>2004 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-84de4f5d87ed7685d09342d42d47a6f16725c62f9474034ecaf69d902904a6a33</citedby><cites>FETCH-LOGICAL-c422t-84de4f5d87ed7685d09342d42d47a6f16725c62f9474034ecaf69d902904a6a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X0300350X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3563,4023,27922,27923,27924,46002</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15397110$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00338539$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Colin, Mathieu</creatorcontrib><creatorcontrib>Jeanjean, Louis</creatorcontrib><title>Solutions for a quasilinear Schrödinger equation: a dual approach</title><title>Nonlinear analysis</title><description>We consider quasilinear stationary Schrödinger equations of the form
(1)
−
Δu−
Δ(u
2)u=g(x,u),
x∈
R
N.
Introducing a change of unknown, we transform the search of solutions
u(
x) of (1) into the search of solutions
v(
x) of the semilinear equation
(2)
−
Δv=
1
1+2f
2(v)
g(x,f(v)),
x∈
R
N,
where
f is suitably chosen. If
v is a classical solution of (2) then
u=
f(
v) is a classical solution of (1). Variational methods are then used to obtain various existence results.</description><subject>Analysis of PDEs</subject><subject>Exact sciences and technology</subject><subject>Global analysis, analysis on manifolds</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Minimax methods</subject><subject>Partial differential equations</subject><subject>Quasilinear Schrödinger equations</subject><subject>Sciences and techniques of general use</subject><subject>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Kw0AQgBdRsFbvHnPx4CFx9iebpLcqaoWChyp4W4bdjd0Sk7jbFnwxX8AXc0NET8LAwMz3zTBDyDmFjAKVV5usxYwB8AyqDKA8IBNaFjzNGc0PyQS4ZGku5MsxOQlhAwC04HJCrldds9u6rg1J3fkEk_cdBte41qJPVnrtvz6Na1-tT2zsDOAsQmaHTYJ97zvU61NyVGMT7NlPnpLnu9unm0W6fLx_uJkvUy0Y26alMFbUuSkLawpZ5gYqLpgZokBZU1mwXEtWV6IQwIXVWMvKVMAqECiR8ym5HOeusVG9d2_oP1SHTi3mSzXU4vG8zHm1p5GFkdW-C8Hb-legoIZ_qY1qUQ3_UlBFs4zKxaj0GDQ2tcdWu_DnxcEFpRC52cjZeOveWa-CdrbV1jhv9VaZzv2_5BsgTn4m</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>Colin, Mathieu</creator><creator>Jeanjean, Louis</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>2004</creationdate><title>Solutions for a quasilinear Schrödinger equation: a dual approach</title><author>Colin, Mathieu ; Jeanjean, Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-84de4f5d87ed7685d09342d42d47a6f16725c62f9474034ecaf69d902904a6a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Analysis of PDEs</topic><topic>Exact sciences and technology</topic><topic>Global analysis, analysis on manifolds</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Minimax methods</topic><topic>Partial differential equations</topic><topic>Quasilinear Schrödinger equations</topic><topic>Sciences and techniques of general use</topic><topic>Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Colin, Mathieu</creatorcontrib><creatorcontrib>Jeanjean, Louis</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Colin, Mathieu</au><au>Jeanjean, Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solutions for a quasilinear Schrödinger equation: a dual approach</atitle><jtitle>Nonlinear analysis</jtitle><date>2004</date><risdate>2004</risdate><volume>56</volume><issue>2</issue><spage>213</spage><epage>226</epage><pages>213-226</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>We consider quasilinear stationary Schrödinger equations of the form
(1)
−
Δu−
Δ(u
2)u=g(x,u),
x∈
R
N.
Introducing a change of unknown, we transform the search of solutions
u(
x) of (1) into the search of solutions
v(
x) of the semilinear equation
(2)
−
Δv=
1
1+2f
2(v)
g(x,f(v)),
x∈
R
N,
where
f is suitably chosen. If
v is a classical solution of (2) then
u=
f(
v) is a classical solution of (1). Variational methods are then used to obtain various existence results.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2003.09.008</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2004, Vol.56 (2), p.213-226 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00338539v1 |
source | Elsevier; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Analysis of PDEs Exact sciences and technology Global analysis, analysis on manifolds Mathematical analysis Mathematics Minimax methods Partial differential equations Quasilinear Schrödinger equations Sciences and techniques of general use Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
title | Solutions for a quasilinear Schrödinger equation: a dual approach |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A24%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solutions%20for%20a%20quasilinear%20Schr%C3%B6dinger%20equation:%20a%20dual%20approach&rft.jtitle=Nonlinear%20analysis&rft.au=Colin,%20Mathieu&rft.date=2004&rft.volume=56&rft.issue=2&rft.spage=213&rft.epage=226&rft.pages=213-226&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2003.09.008&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00338539v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-84de4f5d87ed7685d09342d42d47a6f16725c62f9474034ecaf69d902904a6a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |