Loading…
Nonlinear dynamics of short traveling capillary-gravity waves
We establish a Green-Nagdhi model equation for capillary-gravity waves in (2+1) dimensions. Through the derivation of an asymptotic equation governing short-wave dynamics, we show that this system possesses (1+1) traveling-wave solutions for almost all the values of the Bond number theta (the specia...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2005-02, Vol.71 (2 Pt 2), p.026307-026307, Article 026307 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c379t-10624632021dc4fa12c8f2dec38093285de6004b6f3ac7891b6c86d9d0ee22b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c379t-10624632021dc4fa12c8f2dec38093285de6004b6f3ac7891b6c86d9d0ee22b3 |
container_end_page | 026307 |
container_issue | 2 Pt 2 |
container_start_page | 026307 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 71 |
creator | Borzi, C H Kraenkel, R A Manna, M A Pereira, A |
description | We establish a Green-Nagdhi model equation for capillary-gravity waves in (2+1) dimensions. Through the derivation of an asymptotic equation governing short-wave dynamics, we show that this system possesses (1+1) traveling-wave solutions for almost all the values of the Bond number theta (the special case theta=1/3 is not studied). These waves become singular when their amplitude is larger than a threshold value, related to the velocity of the wave. The limit angle at the crest is then calculated. The stability of a wave train is also studied via a Benjamin-Feir modulational analysis. |
doi_str_mv | 10.1103/PhysRevE.71.026307 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00338939v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67544291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-10624632021dc4fa12c8f2dec38093285de6004b6f3ac7891b6c86d9d0ee22b3</originalsourceid><addsrcrecordid>eNpFUMtOwzAQtBCIlsIPcEA5IXFIsb2JHwcOqCoUqQKEerccx2mDkqbYaVH-HkcpcNrVzkOzg9A1wVNCMNy_bzr_YQ_zKSdTTBlgfoLGJE1xTIGz034HGQNP0xG68P4TY6AgknM0IikXkBA5Rg-vzbYqt1a7KO-2ui6Nj5oi8pvGtVHr9MEGdB0ZvSurSrsuXodb2XbRd4D8JTordOXt1XFO0Oppvpot4uXb88vscRkb4LKNCWY0YUAxJblJCk2oEQXNrQGBJVCR5pZhnGSsAG24kCRjRrBc5thaSjOYoLvBdqMrtXNlHYKoRpdq8bhU_S18BkKCPJDAvR24O9d87a1vVV16Y0P4rW32XjGeJgmVPZEOROMa750t_pwJVn2_6rdfxYka-g2im6P7Pqtt_i85Fgo_--t3KQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67544291</pqid></control><display><type>article</type><title>Nonlinear dynamics of short traveling capillary-gravity waves</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Borzi, C H ; Kraenkel, R A ; Manna, M A ; Pereira, A</creator><creatorcontrib>Borzi, C H ; Kraenkel, R A ; Manna, M A ; Pereira, A</creatorcontrib><description>We establish a Green-Nagdhi model equation for capillary-gravity waves in (2+1) dimensions. Through the derivation of an asymptotic equation governing short-wave dynamics, we show that this system possesses (1+1) traveling-wave solutions for almost all the values of the Bond number theta (the special case theta=1/3 is not studied). These waves become singular when their amplitude is larger than a threshold value, related to the velocity of the wave. The limit angle at the crest is then calculated. The stability of a wave train is also studied via a Benjamin-Feir modulational analysis.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.71.026307</identifier><identifier>PMID: 15783419</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Nonlinear Sciences ; Pattern Formation and Solitons</subject><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2005-02, Vol.71 (2 Pt 2), p.026307-026307, Article 026307</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-10624632021dc4fa12c8f2dec38093285de6004b6f3ac7891b6c86d9d0ee22b3</citedby><cites>FETCH-LOGICAL-c379t-10624632021dc4fa12c8f2dec38093285de6004b6f3ac7891b6c86d9d0ee22b3</cites><orcidid>0000-0002-7183-100X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15783419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00338939$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Borzi, C H</creatorcontrib><creatorcontrib>Kraenkel, R A</creatorcontrib><creatorcontrib>Manna, M A</creatorcontrib><creatorcontrib>Pereira, A</creatorcontrib><title>Nonlinear dynamics of short traveling capillary-gravity waves</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We establish a Green-Nagdhi model equation for capillary-gravity waves in (2+1) dimensions. Through the derivation of an asymptotic equation governing short-wave dynamics, we show that this system possesses (1+1) traveling-wave solutions for almost all the values of the Bond number theta (the special case theta=1/3 is not studied). These waves become singular when their amplitude is larger than a threshold value, related to the velocity of the wave. The limit angle at the crest is then calculated. The stability of a wave train is also studied via a Benjamin-Feir modulational analysis.</description><subject>Nonlinear Sciences</subject><subject>Pattern Formation and Solitons</subject><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNpFUMtOwzAQtBCIlsIPcEA5IXFIsb2JHwcOqCoUqQKEerccx2mDkqbYaVH-HkcpcNrVzkOzg9A1wVNCMNy_bzr_YQ_zKSdTTBlgfoLGJE1xTIGz034HGQNP0xG68P4TY6AgknM0IikXkBA5Rg-vzbYqt1a7KO-2ui6Nj5oi8pvGtVHr9MEGdB0ZvSurSrsuXodb2XbRd4D8JTordOXt1XFO0Oppvpot4uXb88vscRkb4LKNCWY0YUAxJblJCk2oEQXNrQGBJVCR5pZhnGSsAG24kCRjRrBc5thaSjOYoLvBdqMrtXNlHYKoRpdq8bhU_S18BkKCPJDAvR24O9d87a1vVV16Y0P4rW32XjGeJgmVPZEOROMa750t_pwJVn2_6rdfxYka-g2im6P7Pqtt_i85Fgo_--t3KQ</recordid><startdate>20050201</startdate><enddate>20050201</enddate><creator>Borzi, C H</creator><creator>Kraenkel, R A</creator><creator>Manna, M A</creator><creator>Pereira, A</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7183-100X</orcidid></search><sort><creationdate>20050201</creationdate><title>Nonlinear dynamics of short traveling capillary-gravity waves</title><author>Borzi, C H ; Kraenkel, R A ; Manna, M A ; Pereira, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-10624632021dc4fa12c8f2dec38093285de6004b6f3ac7891b6c86d9d0ee22b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Nonlinear Sciences</topic><topic>Pattern Formation and Solitons</topic><toplevel>online_resources</toplevel><creatorcontrib>Borzi, C H</creatorcontrib><creatorcontrib>Kraenkel, R A</creatorcontrib><creatorcontrib>Manna, M A</creatorcontrib><creatorcontrib>Pereira, A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borzi, C H</au><au>Kraenkel, R A</au><au>Manna, M A</au><au>Pereira, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear dynamics of short traveling capillary-gravity waves</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2005-02-01</date><risdate>2005</risdate><volume>71</volume><issue>2 Pt 2</issue><spage>026307</spage><epage>026307</epage><pages>026307-026307</pages><artnum>026307</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We establish a Green-Nagdhi model equation for capillary-gravity waves in (2+1) dimensions. Through the derivation of an asymptotic equation governing short-wave dynamics, we show that this system possesses (1+1) traveling-wave solutions for almost all the values of the Bond number theta (the special case theta=1/3 is not studied). These waves become singular when their amplitude is larger than a threshold value, related to the velocity of the wave. The limit angle at the crest is then calculated. The stability of a wave train is also studied via a Benjamin-Feir modulational analysis.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>15783419</pmid><doi>10.1103/PhysRevE.71.026307</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-7183-100X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2005-02, Vol.71 (2 Pt 2), p.026307-026307, Article 026307 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00338939v1 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Nonlinear Sciences Pattern Formation and Solitons |
title | Nonlinear dynamics of short traveling capillary-gravity waves |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T19%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20dynamics%20of%20short%20traveling%20capillary-gravity%20waves&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Borzi,%20C%20H&rft.date=2005-02-01&rft.volume=71&rft.issue=2%20Pt%202&rft.spage=026307&rft.epage=026307&rft.pages=026307-026307&rft.artnum=026307&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.71.026307&rft_dat=%3Cproquest_hal_p%3E67544291%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c379t-10624632021dc4fa12c8f2dec38093285de6004b6f3ac7891b6c86d9d0ee22b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=67544291&rft_id=info:pmid/15783419&rfr_iscdi=true |