Loading…
Asymptotic results for bifurcations in pure bending of rubber blocks
The bifurcation of an incompressible neo-Hookean thick block with a ratio of thickness to length η, subject to pure bending, is considered. The two incremental equilibrium equations corresponding to a nonlinear pre-buckling state of strain are reduced to a fourth-order linear eigenproblem that displ...
Saved in:
Published in: | Quarterly journal of mechanics and applied mathematics 2008-08, Vol.61 (3), p.395-414 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c434t-179edeea45bd16d34087a49ebe707f65fc7009f28c446a8058cf5084e94326903 |
---|---|
cites | |
container_end_page | 414 |
container_issue | 3 |
container_start_page | 395 |
container_title | Quarterly journal of mechanics and applied mathematics |
container_volume | 61 |
creator | Coman, Ciprian D. Destrade, Michel |
description | The bifurcation of an incompressible neo-Hookean thick block with a ratio of thickness to length η, subject to pure bending, is considered. The two incremental equilibrium equations corresponding to a nonlinear pre-buckling state of strain are reduced to a fourth-order linear eigenproblem that displays a multiple turning point. It is found that for 0 |
doi_str_mv | 10.1093/qjmam/hbn009 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00341387v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/qjmam/hbn009</oup_id><sourcerecordid>1535963541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-179edeea45bd16d34087a49ebe707f65fc7009f28c446a8058cf5084e94326903</originalsourceid><addsrcrecordid>eNqF0E1v1DAQBmALgcRSuPEDIiSEkAgdx-OPHLflYxELXEqFuFiO16beZuPUThD997ik2iunkazHr2ZeQp5TeEuhZac3-4M5nF51A0D7gKwoCqyZ4vwhWQEwVnNB8TF5kvMeABCVWJF363x7GKc4BVsll-d-ypWPqeqCn5M1U4hDrsJQjXNyVeeGXRh-VdFXae46V1gf7XV-Sh5502f37H6ekO8f3l-cb-rtt4-fztfb2iLDqaaydTvnDPJuR8WOIShpsHWdkyC94N7KsrhvlEUURgFX1nNQ6FpkjWiBnZDXS-6V6fWYwsGkWx1N0Jv1Vt-9lSuRMiV_02JfLHZM8WZ2edL7OKehrKcb1qBQyNuC3izIpphzcv6YSkHfVar_VaqXSgt_eZ9psjW9T2awIR__NMBLLjTFvVpcnMf_JdaLDHlyf47WpGstJJNcb3781Gefv8jLS3mhv7K_3ziTTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232468459</pqid></control><display><type>article</type><title>Asymptotic results for bifurcations in pure bending of rubber blocks</title><source>Oxford Journals Online</source><creator>Coman, Ciprian D. ; Destrade, Michel</creator><creatorcontrib>Coman, Ciprian D. ; Destrade, Michel</creatorcontrib><description>The bifurcation of an incompressible neo-Hookean thick block with a ratio of thickness to length η, subject to pure bending, is considered. The two incremental equilibrium equations corresponding to a nonlinear pre-buckling state of strain are reduced to a fourth-order linear eigenproblem that displays a multiple turning point. It is found that for 0 < η < ∞, the block experiences an Euler-type buckling instability which in the limit η → ∞ degenerates into a surface instability. Singular perturbation methods enable us to capture this transition, while direct numerical simulations corroborate the analytical results.</description><identifier>ISSN: 0033-5614</identifier><identifier>EISSN: 1464-3855</identifier><identifier>DOI: 10.1093/qjmam/hbn009</identifier><identifier>CODEN: QJMMAV</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Applied sciences ; Buckling ; Elastomers ; Engineering Sciences ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Industrial polymers. Preparations ; Materials and structures in mechanics ; Mathematical methods in physics ; Mechanics ; Numerical approximation and analysis ; Numerical simulation, solution of equations ; Physics ; Polymer industry, paints, wood ; Solid mechanics ; Structural and continuum mechanics ; Technology of polymers</subject><ispartof>Quarterly journal of mechanics and applied mathematics, 2008-08, Vol.61 (3), p.395-414</ispartof><rights>Q. Jl Mech. Appl. Math, Vol. 61. No. 3 © The author 2008. Published by Oxford University Press; all rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2008</rights><rights>2008 INIST-CNRS</rights><rights>Q. Jl Mech. Appl. Math, Vol. 61. No. 3 © The author 2008. Published by Oxford University Press; all rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-179edeea45bd16d34087a49ebe707f65fc7009f28c446a8058cf5084e94326903</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20546802$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00341387$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Coman, Ciprian D.</creatorcontrib><creatorcontrib>Destrade, Michel</creatorcontrib><title>Asymptotic results for bifurcations in pure bending of rubber blocks</title><title>Quarterly journal of mechanics and applied mathematics</title><description>The bifurcation of an incompressible neo-Hookean thick block with a ratio of thickness to length η, subject to pure bending, is considered. The two incremental equilibrium equations corresponding to a nonlinear pre-buckling state of strain are reduced to a fourth-order linear eigenproblem that displays a multiple turning point. It is found that for 0 < η < ∞, the block experiences an Euler-type buckling instability which in the limit η → ∞ degenerates into a surface instability. Singular perturbation methods enable us to capture this transition, while direct numerical simulations corroborate the analytical results.</description><subject>Applied sciences</subject><subject>Buckling</subject><subject>Elastomers</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Industrial polymers. Preparations</subject><subject>Materials and structures in mechanics</subject><subject>Mathematical methods in physics</subject><subject>Mechanics</subject><subject>Numerical approximation and analysis</subject><subject>Numerical simulation, solution of equations</subject><subject>Physics</subject><subject>Polymer industry, paints, wood</subject><subject>Solid mechanics</subject><subject>Structural and continuum mechanics</subject><subject>Technology of polymers</subject><issn>0033-5614</issn><issn>1464-3855</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqF0E1v1DAQBmALgcRSuPEDIiSEkAgdx-OPHLflYxELXEqFuFiO16beZuPUThD997ik2iunkazHr2ZeQp5TeEuhZac3-4M5nF51A0D7gKwoCqyZ4vwhWQEwVnNB8TF5kvMeABCVWJF363x7GKc4BVsll-d-ypWPqeqCn5M1U4hDrsJQjXNyVeeGXRh-VdFXae46V1gf7XV-Sh5502f37H6ekO8f3l-cb-rtt4-fztfb2iLDqaaydTvnDPJuR8WOIShpsHWdkyC94N7KsrhvlEUURgFX1nNQ6FpkjWiBnZDXS-6V6fWYwsGkWx1N0Jv1Vt-9lSuRMiV_02JfLHZM8WZ2edL7OKehrKcb1qBQyNuC3izIpphzcv6YSkHfVar_VaqXSgt_eZ9psjW9T2awIR__NMBLLjTFvVpcnMf_JdaLDHlyf47WpGstJJNcb3781Gefv8jLS3mhv7K_3ziTTA</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Coman, Ciprian D.</creator><creator>Destrade, Michel</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><general>Oxford University Press (OUP)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20080801</creationdate><title>Asymptotic results for bifurcations in pure bending of rubber blocks</title><author>Coman, Ciprian D. ; Destrade, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-179edeea45bd16d34087a49ebe707f65fc7009f28c446a8058cf5084e94326903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Buckling</topic><topic>Elastomers</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Industrial polymers. Preparations</topic><topic>Materials and structures in mechanics</topic><topic>Mathematical methods in physics</topic><topic>Mechanics</topic><topic>Numerical approximation and analysis</topic><topic>Numerical simulation, solution of equations</topic><topic>Physics</topic><topic>Polymer industry, paints, wood</topic><topic>Solid mechanics</topic><topic>Structural and continuum mechanics</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coman, Ciprian D.</creatorcontrib><creatorcontrib>Destrade, Michel</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Quarterly journal of mechanics and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coman, Ciprian D.</au><au>Destrade, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic results for bifurcations in pure bending of rubber blocks</atitle><jtitle>Quarterly journal of mechanics and applied mathematics</jtitle><date>2008-08-01</date><risdate>2008</risdate><volume>61</volume><issue>3</issue><spage>395</spage><epage>414</epage><pages>395-414</pages><issn>0033-5614</issn><eissn>1464-3855</eissn><coden>QJMMAV</coden><abstract>The bifurcation of an incompressible neo-Hookean thick block with a ratio of thickness to length η, subject to pure bending, is considered. The two incremental equilibrium equations corresponding to a nonlinear pre-buckling state of strain are reduced to a fourth-order linear eigenproblem that displays a multiple turning point. It is found that for 0 < η < ∞, the block experiences an Euler-type buckling instability which in the limit η → ∞ degenerates into a surface instability. Singular perturbation methods enable us to capture this transition, while direct numerical simulations corroborate the analytical results.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><doi>10.1093/qjmam/hbn009</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-5614 |
ispartof | Quarterly journal of mechanics and applied mathematics, 2008-08, Vol.61 (3), p.395-414 |
issn | 0033-5614 1464-3855 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00341387v1 |
source | Oxford Journals Online |
subjects | Applied sciences Buckling Elastomers Engineering Sciences Exact sciences and technology Fundamental areas of phenomenology (including applications) Industrial polymers. Preparations Materials and structures in mechanics Mathematical methods in physics Mechanics Numerical approximation and analysis Numerical simulation, solution of equations Physics Polymer industry, paints, wood Solid mechanics Structural and continuum mechanics Technology of polymers |
title | Asymptotic results for bifurcations in pure bending of rubber blocks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A20%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20results%20for%20bifurcations%20in%20pure%20bending%20of%20rubber%20blocks&rft.jtitle=Quarterly%20journal%20of%20mechanics%20and%20applied%20mathematics&rft.au=Coman,%20Ciprian%20D.&rft.date=2008-08-01&rft.volume=61&rft.issue=3&rft.spage=395&rft.epage=414&rft.pages=395-414&rft.issn=0033-5614&rft.eissn=1464-3855&rft.coden=QJMMAV&rft_id=info:doi/10.1093/qjmam/hbn009&rft_dat=%3Cproquest_hal_p%3E1535963541%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-179edeea45bd16d34087a49ebe707f65fc7009f28c446a8058cf5084e94326903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=232468459&rft_id=info:pmid/&rft_oup_id=10.1093/qjmam/hbn009&rfr_iscdi=true |