Loading…
Real-Space Pairing through Charge Transfer Excitons in High-TC Cuprates
While approaching a Mott-Hubbard transition by hole doping of the pristine La(2)CuO(4) cuprate, excitons are created because of exciton-exciton and exciton-doping hole stabilizing interactions. Here, excitons are of charge-transfer Frenkel-type, with effective Cu(+)O(-) electrical dipoles that solva...
Saved in:
Published in: | Inorganic chemistry 2008-12, Vol.47 (24), p.11958-11964 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | While approaching a Mott-Hubbard transition by hole doping of the pristine La(2)CuO(4) cuprate, excitons are created because of exciton-exciton and exciton-doping hole stabilizing interactions. Here, excitons are of charge-transfer Frenkel-type, with effective Cu(+)O(-) electrical dipoles that solvate the doping charges. Assuming a moderate screening by charge carriers, we show that mobile exciton-solvated doping holes should be associated in pairs either by a deep energy well or as thermodynamically stable pairs that can glide in the [100] or [010] direction after Bose condensation. Exciton-exciton dipolar interactions constitute thus the "pairing glue" in this model, which is based on instantaneous interactions and intrinsically differs from the previous excitonic models, in which BCS virtual phonons were replaced by virtual excitons. |
---|---|
ISSN: | 0020-1669 1520-510X |
DOI: | 10.1021/ic801266q |