Loading…
Forecasting time series using principal component analysis with respect to instrumental variables
Two new forecasting methods of time series are introduced. They are both based on a factorial analysis method called spline principal component analysis with respect to instrumental variables (spline PCAIV). The first method is a straightforward application of spline PCAIV while the second one is an...
Saved in:
Published in: | Computational statistics & data analysis 2008, Vol.52 (3), p.1269-1280 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Two new forecasting methods of time series are introduced. They are both based on a factorial analysis method called spline principal component analysis with respect to instrumental variables (spline PCAIV). The first method is a straightforward application of spline PCAIV while the second one is an adaptation of spline PCAIV. In the modified version, the used criteria according to the unknown value that need to be predicted are differentiated. Those two forecasting methods are shown to be well adapted to time series. |
---|---|
ISSN: | 0167-9473 1872-7352 |
DOI: | 10.1016/j.csda.2007.06.017 |