Loading…

Numerical modeling for preliminary design of the hydrogen production electrolyzer in the Westinghouse hybrid cycle

The Westinghouse sulfur process decomposes water into hydrogen and oxygen in several steps. This process requires a high-temperature thermal source, which could ideally be a fourth-generation nuclear reactor for recycling compounds. The process consists of producing hydrogen in a specific electrolyz...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy 2008-02, Vol.33 (4), p.1142-1152
Main Authors: Jomard, F., Feraud, J.P., Caire, J.P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c376t-369c0e03c66f0fbd7fb0d1432bc6b02c43ac42ecae7717f1f30590abc9d1113
cites cdi_FETCH-LOGICAL-c376t-369c0e03c66f0fbd7fb0d1432bc6b02c43ac42ecae7717f1f30590abc9d1113
container_end_page 1152
container_issue 4
container_start_page 1142
container_title International journal of hydrogen energy
container_volume 33
creator Jomard, F.
Feraud, J.P.
Caire, J.P.
description The Westinghouse sulfur process decomposes water into hydrogen and oxygen in several steps. This process requires a high-temperature thermal source, which could ideally be a fourth-generation nuclear reactor for recycling compounds. The process consists of producing hydrogen in a specific electrolyzer where protons are reduced at the cathode while an oxidation reaction, in which sulfur dioxide forms sulfuric acid, takes place in the anode compartment. This type of reaction enables mass hydrogen production at a very low cell voltage because the thermodynamic oxidation potential of SO2/H2SO4 is 0.17V, compared with 1.23V for the common electrolysis of water by H2O/O2 oxidation. This article describes the electrical/thermal coupling of an individual filter press electrolysis cell for the preliminary design of a future test pilot. Solving coupled equations describing heat transfer and electrokinetics in the presence of forced convective flow of a two-phase electrolyte allows charge and heat transfer to be predicted for different configurations.
doi_str_mv 10.1016/j.ijhydene.2007.12.052
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00365566v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319907008026</els_id><sourcerecordid>S0360319907008026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-369c0e03c66f0fbd7fb0d1432bc6b02c43ac42ecae7717f1f30590abc9d1113</originalsourceid><addsrcrecordid>eNqFkMGOEzEMhiMEEmXhFVAuHDjM4EymSefGasWySBUcQOIYZRynTTVNqmS6Unl6MhT2ysmW9f22_DH2VkArQKgPhzYc9hdHkdoOQLeia2HdPWMrsdFDI_uNfs5WIBU0UgzDS_aqlAOA0NAPK5a_no-UA9qJH5OjKcQd9ynzU679MUSbL9xRCbvIk-fznng9ldOOYkWSO-McUuQ0Ec45TZdflHmIf7ifVOa6bZ_OZQmNOTiOF5zoNXvh7VTozd96w77ff_px99Bsv33-cne7bVBqNTdSDQgEEpXy4Een_QhO9LIbUY3QYS8t9h2hJa2F9sJLWA9gRxycEELesPfXrXs7mVMOx_qJSTaYh9utWWZQlazXSj0urLqymFMpmfxTQIBZHJuD-efYLI6N6Ex1XIPvrsGTLVWhzzZiKE_pDsSmV2rhPl45qv8-BsqmYKCI5EKu5oxL4X-nfgMv45hv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical modeling for preliminary design of the hydrogen production electrolyzer in the Westinghouse hybrid cycle</title><source>ScienceDirect Journals</source><creator>Jomard, F. ; Feraud, J.P. ; Caire, J.P.</creator><creatorcontrib>Jomard, F. ; Feraud, J.P. ; Caire, J.P.</creatorcontrib><description>The Westinghouse sulfur process decomposes water into hydrogen and oxygen in several steps. This process requires a high-temperature thermal source, which could ideally be a fourth-generation nuclear reactor for recycling compounds. The process consists of producing hydrogen in a specific electrolyzer where protons are reduced at the cathode while an oxidation reaction, in which sulfur dioxide forms sulfuric acid, takes place in the anode compartment. This type of reaction enables mass hydrogen production at a very low cell voltage because the thermodynamic oxidation potential of SO2/H2SO4 is 0.17V, compared with 1.23V for the common electrolysis of water by H2O/O2 oxidation. This article describes the electrical/thermal coupling of an individual filter press electrolysis cell for the preliminary design of a future test pilot. Solving coupled equations describing heat transfer and electrokinetics in the presence of forced convective flow of a two-phase electrolyte allows charge and heat transfer to be predicted for different configurations.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2007.12.052</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Chemical Sciences ; Electrolyzer ; Energy ; Exact sciences and technology ; Filter press ; Flux-Expert ; Fuels ; Generation IV ; Hybrid cycle ; Hydrogen ; Material chemistry ; Modelizing ; Nuclear ; Overpotential</subject><ispartof>International journal of hydrogen energy, 2008-02, Vol.33 (4), p.1142-1152</ispartof><rights>2007 International Association for Hydrogen Energy</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-369c0e03c66f0fbd7fb0d1432bc6b02c43ac42ecae7717f1f30590abc9d1113</citedby><cites>FETCH-LOGICAL-c376t-369c0e03c66f0fbd7fb0d1432bc6b02c43ac42ecae7717f1f30590abc9d1113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20184662$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00365566$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jomard, F.</creatorcontrib><creatorcontrib>Feraud, J.P.</creatorcontrib><creatorcontrib>Caire, J.P.</creatorcontrib><title>Numerical modeling for preliminary design of the hydrogen production electrolyzer in the Westinghouse hybrid cycle</title><title>International journal of hydrogen energy</title><description>The Westinghouse sulfur process decomposes water into hydrogen and oxygen in several steps. This process requires a high-temperature thermal source, which could ideally be a fourth-generation nuclear reactor for recycling compounds. The process consists of producing hydrogen in a specific electrolyzer where protons are reduced at the cathode while an oxidation reaction, in which sulfur dioxide forms sulfuric acid, takes place in the anode compartment. This type of reaction enables mass hydrogen production at a very low cell voltage because the thermodynamic oxidation potential of SO2/H2SO4 is 0.17V, compared with 1.23V for the common electrolysis of water by H2O/O2 oxidation. This article describes the electrical/thermal coupling of an individual filter press electrolysis cell for the preliminary design of a future test pilot. Solving coupled equations describing heat transfer and electrokinetics in the presence of forced convective flow of a two-phase electrolyte allows charge and heat transfer to be predicted for different configurations.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Chemical Sciences</subject><subject>Electrolyzer</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Filter press</subject><subject>Flux-Expert</subject><subject>Fuels</subject><subject>Generation IV</subject><subject>Hybrid cycle</subject><subject>Hydrogen</subject><subject>Material chemistry</subject><subject>Modelizing</subject><subject>Nuclear</subject><subject>Overpotential</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMGOEzEMhiMEEmXhFVAuHDjM4EymSefGasWySBUcQOIYZRynTTVNqmS6Unl6MhT2ysmW9f22_DH2VkArQKgPhzYc9hdHkdoOQLeia2HdPWMrsdFDI_uNfs5WIBU0UgzDS_aqlAOA0NAPK5a_no-UA9qJH5OjKcQd9ynzU679MUSbL9xRCbvIk-fznng9ldOOYkWSO-McUuQ0Ec45TZdflHmIf7ifVOa6bZ_OZQmNOTiOF5zoNXvh7VTozd96w77ff_px99Bsv33-cne7bVBqNTdSDQgEEpXy4Een_QhO9LIbUY3QYS8t9h2hJa2F9sJLWA9gRxycEELesPfXrXs7mVMOx_qJSTaYh9utWWZQlazXSj0urLqymFMpmfxTQIBZHJuD-efYLI6N6Ex1XIPvrsGTLVWhzzZiKE_pDsSmV2rhPl45qv8-BsqmYKCI5EKu5oxL4X-nfgMv45hv</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Jomard, F.</creator><creator>Feraud, J.P.</creator><creator>Caire, J.P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20080201</creationdate><title>Numerical modeling for preliminary design of the hydrogen production electrolyzer in the Westinghouse hybrid cycle</title><author>Jomard, F. ; Feraud, J.P. ; Caire, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-369c0e03c66f0fbd7fb0d1432bc6b02c43ac42ecae7717f1f30590abc9d1113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Chemical Sciences</topic><topic>Electrolyzer</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Filter press</topic><topic>Flux-Expert</topic><topic>Fuels</topic><topic>Generation IV</topic><topic>Hybrid cycle</topic><topic>Hydrogen</topic><topic>Material chemistry</topic><topic>Modelizing</topic><topic>Nuclear</topic><topic>Overpotential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jomard, F.</creatorcontrib><creatorcontrib>Feraud, J.P.</creatorcontrib><creatorcontrib>Caire, J.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jomard, F.</au><au>Feraud, J.P.</au><au>Caire, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modeling for preliminary design of the hydrogen production electrolyzer in the Westinghouse hybrid cycle</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2008-02-01</date><risdate>2008</risdate><volume>33</volume><issue>4</issue><spage>1142</spage><epage>1152</epage><pages>1142-1152</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>The Westinghouse sulfur process decomposes water into hydrogen and oxygen in several steps. This process requires a high-temperature thermal source, which could ideally be a fourth-generation nuclear reactor for recycling compounds. The process consists of producing hydrogen in a specific electrolyzer where protons are reduced at the cathode while an oxidation reaction, in which sulfur dioxide forms sulfuric acid, takes place in the anode compartment. This type of reaction enables mass hydrogen production at a very low cell voltage because the thermodynamic oxidation potential of SO2/H2SO4 is 0.17V, compared with 1.23V for the common electrolysis of water by H2O/O2 oxidation. This article describes the electrical/thermal coupling of an individual filter press electrolysis cell for the preliminary design of a future test pilot. Solving coupled equations describing heat transfer and electrokinetics in the presence of forced convective flow of a two-phase electrolyte allows charge and heat transfer to be predicted for different configurations.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2007.12.052</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-3199
ispartof International journal of hydrogen energy, 2008-02, Vol.33 (4), p.1142-1152
issn 0360-3199
1879-3487
language eng
recordid cdi_hal_primary_oai_HAL_hal_00365566v1
source ScienceDirect Journals
subjects Alternative fuels. Production and utilization
Applied sciences
Chemical Sciences
Electrolyzer
Energy
Exact sciences and technology
Filter press
Flux-Expert
Fuels
Generation IV
Hybrid cycle
Hydrogen
Material chemistry
Modelizing
Nuclear
Overpotential
title Numerical modeling for preliminary design of the hydrogen production electrolyzer in the Westinghouse hybrid cycle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modeling%20for%20preliminary%20design%20of%20the%20hydrogen%20production%20electrolyzer%20in%20the%20Westinghouse%20hybrid%20cycle&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Jomard,%20F.&rft.date=2008-02-01&rft.volume=33&rft.issue=4&rft.spage=1142&rft.epage=1152&rft.pages=1142-1152&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2007.12.052&rft_dat=%3Celsevier_hal_p%3ES0360319907008026%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-369c0e03c66f0fbd7fb0d1432bc6b02c43ac42ecae7717f1f30590abc9d1113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true