Loading…
Numerical modeling for preliminary design of the hydrogen production electrolyzer in the Westinghouse hybrid cycle
The Westinghouse sulfur process decomposes water into hydrogen and oxygen in several steps. This process requires a high-temperature thermal source, which could ideally be a fourth-generation nuclear reactor for recycling compounds. The process consists of producing hydrogen in a specific electrolyz...
Saved in:
Published in: | International journal of hydrogen energy 2008-02, Vol.33 (4), p.1142-1152 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c376t-369c0e03c66f0fbd7fb0d1432bc6b02c43ac42ecae7717f1f30590abc9d1113 |
---|---|
cites | cdi_FETCH-LOGICAL-c376t-369c0e03c66f0fbd7fb0d1432bc6b02c43ac42ecae7717f1f30590abc9d1113 |
container_end_page | 1152 |
container_issue | 4 |
container_start_page | 1142 |
container_title | International journal of hydrogen energy |
container_volume | 33 |
creator | Jomard, F. Feraud, J.P. Caire, J.P. |
description | The Westinghouse sulfur process decomposes water into hydrogen and oxygen in several steps. This process requires a high-temperature thermal source, which could ideally be a fourth-generation nuclear reactor for recycling compounds. The process consists of producing hydrogen in a specific electrolyzer where protons are reduced at the cathode while an oxidation reaction, in which sulfur dioxide forms sulfuric acid, takes place in the anode compartment. This type of reaction enables mass hydrogen production at a very low cell voltage because the thermodynamic oxidation potential of SO2/H2SO4 is 0.17V, compared with 1.23V for the common electrolysis of water by H2O/O2 oxidation. This article describes the electrical/thermal coupling of an individual filter press electrolysis cell for the preliminary design of a future test pilot. Solving coupled equations describing heat transfer and electrokinetics in the presence of forced convective flow of a two-phase electrolyte allows charge and heat transfer to be predicted for different configurations. |
doi_str_mv | 10.1016/j.ijhydene.2007.12.052 |
format | article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00365566v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360319907008026</els_id><sourcerecordid>S0360319907008026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-369c0e03c66f0fbd7fb0d1432bc6b02c43ac42ecae7717f1f30590abc9d1113</originalsourceid><addsrcrecordid>eNqFkMGOEzEMhiMEEmXhFVAuHDjM4EymSefGasWySBUcQOIYZRynTTVNqmS6Unl6MhT2ysmW9f22_DH2VkArQKgPhzYc9hdHkdoOQLeia2HdPWMrsdFDI_uNfs5WIBU0UgzDS_aqlAOA0NAPK5a_no-UA9qJH5OjKcQd9ynzU679MUSbL9xRCbvIk-fznng9ldOOYkWSO-McUuQ0Ec45TZdflHmIf7ifVOa6bZ_OZQmNOTiOF5zoNXvh7VTozd96w77ff_px99Bsv33-cne7bVBqNTdSDQgEEpXy4Een_QhO9LIbUY3QYS8t9h2hJa2F9sJLWA9gRxycEELesPfXrXs7mVMOx_qJSTaYh9utWWZQlazXSj0urLqymFMpmfxTQIBZHJuD-efYLI6N6Ex1XIPvrsGTLVWhzzZiKE_pDsSmV2rhPl45qv8-BsqmYKCI5EKu5oxL4X-nfgMv45hv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical modeling for preliminary design of the hydrogen production electrolyzer in the Westinghouse hybrid cycle</title><source>ScienceDirect Journals</source><creator>Jomard, F. ; Feraud, J.P. ; Caire, J.P.</creator><creatorcontrib>Jomard, F. ; Feraud, J.P. ; Caire, J.P.</creatorcontrib><description>The Westinghouse sulfur process decomposes water into hydrogen and oxygen in several steps. This process requires a high-temperature thermal source, which could ideally be a fourth-generation nuclear reactor for recycling compounds. The process consists of producing hydrogen in a specific electrolyzer where protons are reduced at the cathode while an oxidation reaction, in which sulfur dioxide forms sulfuric acid, takes place in the anode compartment. This type of reaction enables mass hydrogen production at a very low cell voltage because the thermodynamic oxidation potential of SO2/H2SO4 is 0.17V, compared with 1.23V for the common electrolysis of water by H2O/O2 oxidation. This article describes the electrical/thermal coupling of an individual filter press electrolysis cell for the preliminary design of a future test pilot. Solving coupled equations describing heat transfer and electrokinetics in the presence of forced convective flow of a two-phase electrolyte allows charge and heat transfer to be predicted for different configurations.</description><identifier>ISSN: 0360-3199</identifier><identifier>EISSN: 1879-3487</identifier><identifier>DOI: 10.1016/j.ijhydene.2007.12.052</identifier><identifier>CODEN: IJHEDX</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Chemical Sciences ; Electrolyzer ; Energy ; Exact sciences and technology ; Filter press ; Flux-Expert ; Fuels ; Generation IV ; Hybrid cycle ; Hydrogen ; Material chemistry ; Modelizing ; Nuclear ; Overpotential</subject><ispartof>International journal of hydrogen energy, 2008-02, Vol.33 (4), p.1142-1152</ispartof><rights>2007 International Association for Hydrogen Energy</rights><rights>2008 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-369c0e03c66f0fbd7fb0d1432bc6b02c43ac42ecae7717f1f30590abc9d1113</citedby><cites>FETCH-LOGICAL-c376t-369c0e03c66f0fbd7fb0d1432bc6b02c43ac42ecae7717f1f30590abc9d1113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20184662$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00365566$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jomard, F.</creatorcontrib><creatorcontrib>Feraud, J.P.</creatorcontrib><creatorcontrib>Caire, J.P.</creatorcontrib><title>Numerical modeling for preliminary design of the hydrogen production electrolyzer in the Westinghouse hybrid cycle</title><title>International journal of hydrogen energy</title><description>The Westinghouse sulfur process decomposes water into hydrogen and oxygen in several steps. This process requires a high-temperature thermal source, which could ideally be a fourth-generation nuclear reactor for recycling compounds. The process consists of producing hydrogen in a specific electrolyzer where protons are reduced at the cathode while an oxidation reaction, in which sulfur dioxide forms sulfuric acid, takes place in the anode compartment. This type of reaction enables mass hydrogen production at a very low cell voltage because the thermodynamic oxidation potential of SO2/H2SO4 is 0.17V, compared with 1.23V for the common electrolysis of water by H2O/O2 oxidation. This article describes the electrical/thermal coupling of an individual filter press electrolysis cell for the preliminary design of a future test pilot. Solving coupled equations describing heat transfer and electrokinetics in the presence of forced convective flow of a two-phase electrolyte allows charge and heat transfer to be predicted for different configurations.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Chemical Sciences</subject><subject>Electrolyzer</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Filter press</subject><subject>Flux-Expert</subject><subject>Fuels</subject><subject>Generation IV</subject><subject>Hybrid cycle</subject><subject>Hydrogen</subject><subject>Material chemistry</subject><subject>Modelizing</subject><subject>Nuclear</subject><subject>Overpotential</subject><issn>0360-3199</issn><issn>1879-3487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkMGOEzEMhiMEEmXhFVAuHDjM4EymSefGasWySBUcQOIYZRynTTVNqmS6Unl6MhT2ysmW9f22_DH2VkArQKgPhzYc9hdHkdoOQLeia2HdPWMrsdFDI_uNfs5WIBU0UgzDS_aqlAOA0NAPK5a_no-UA9qJH5OjKcQd9ynzU679MUSbL9xRCbvIk-fznng9ldOOYkWSO-McUuQ0Ec45TZdflHmIf7ifVOa6bZ_OZQmNOTiOF5zoNXvh7VTozd96w77ff_px99Bsv33-cne7bVBqNTdSDQgEEpXy4Een_QhO9LIbUY3QYS8t9h2hJa2F9sJLWA9gRxycEELesPfXrXs7mVMOx_qJSTaYh9utWWZQlazXSj0urLqymFMpmfxTQIBZHJuD-efYLI6N6Ex1XIPvrsGTLVWhzzZiKE_pDsSmV2rhPl45qv8-BsqmYKCI5EKu5oxL4X-nfgMv45hv</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Jomard, F.</creator><creator>Feraud, J.P.</creator><creator>Caire, J.P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20080201</creationdate><title>Numerical modeling for preliminary design of the hydrogen production electrolyzer in the Westinghouse hybrid cycle</title><author>Jomard, F. ; Feraud, J.P. ; Caire, J.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-369c0e03c66f0fbd7fb0d1432bc6b02c43ac42ecae7717f1f30590abc9d1113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Chemical Sciences</topic><topic>Electrolyzer</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Filter press</topic><topic>Flux-Expert</topic><topic>Fuels</topic><topic>Generation IV</topic><topic>Hybrid cycle</topic><topic>Hydrogen</topic><topic>Material chemistry</topic><topic>Modelizing</topic><topic>Nuclear</topic><topic>Overpotential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jomard, F.</creatorcontrib><creatorcontrib>Feraud, J.P.</creatorcontrib><creatorcontrib>Caire, J.P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of hydrogen energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jomard, F.</au><au>Feraud, J.P.</au><au>Caire, J.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modeling for preliminary design of the hydrogen production electrolyzer in the Westinghouse hybrid cycle</atitle><jtitle>International journal of hydrogen energy</jtitle><date>2008-02-01</date><risdate>2008</risdate><volume>33</volume><issue>4</issue><spage>1142</spage><epage>1152</epage><pages>1142-1152</pages><issn>0360-3199</issn><eissn>1879-3487</eissn><coden>IJHEDX</coden><abstract>The Westinghouse sulfur process decomposes water into hydrogen and oxygen in several steps. This process requires a high-temperature thermal source, which could ideally be a fourth-generation nuclear reactor for recycling compounds. The process consists of producing hydrogen in a specific electrolyzer where protons are reduced at the cathode while an oxidation reaction, in which sulfur dioxide forms sulfuric acid, takes place in the anode compartment. This type of reaction enables mass hydrogen production at a very low cell voltage because the thermodynamic oxidation potential of SO2/H2SO4 is 0.17V, compared with 1.23V for the common electrolysis of water by H2O/O2 oxidation. This article describes the electrical/thermal coupling of an individual filter press electrolysis cell for the preliminary design of a future test pilot. Solving coupled equations describing heat transfer and electrokinetics in the presence of forced convective flow of a two-phase electrolyte allows charge and heat transfer to be predicted for different configurations.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijhydene.2007.12.052</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-3199 |
ispartof | International journal of hydrogen energy, 2008-02, Vol.33 (4), p.1142-1152 |
issn | 0360-3199 1879-3487 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00365566v1 |
source | ScienceDirect Journals |
subjects | Alternative fuels. Production and utilization Applied sciences Chemical Sciences Electrolyzer Energy Exact sciences and technology Filter press Flux-Expert Fuels Generation IV Hybrid cycle Hydrogen Material chemistry Modelizing Nuclear Overpotential |
title | Numerical modeling for preliminary design of the hydrogen production electrolyzer in the Westinghouse hybrid cycle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A55%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modeling%20for%20preliminary%20design%20of%20the%20hydrogen%20production%20electrolyzer%20in%20the%20Westinghouse%20hybrid%20cycle&rft.jtitle=International%20journal%20of%20hydrogen%20energy&rft.au=Jomard,%20F.&rft.date=2008-02-01&rft.volume=33&rft.issue=4&rft.spage=1142&rft.epage=1152&rft.pages=1142-1152&rft.issn=0360-3199&rft.eissn=1879-3487&rft.coden=IJHEDX&rft_id=info:doi/10.1016/j.ijhydene.2007.12.052&rft_dat=%3Celsevier_hal_p%3ES0360319907008026%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c376t-369c0e03c66f0fbd7fb0d1432bc6b02c43ac42ecae7717f1f30590abc9d1113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |