Loading…

Liquid nanofilms. A mechanical model for the disjoining pressure

Liquids in contact with solids are submitted to intermolecular forces making liquids heterogeneous and, in a mechanical model, the stress tensor is not any more spherical as in homogeneous bulks. The aim of this article is to show that a square-gradient functional taking into account the volume liqu...

Full description

Saved in:
Bibliographic Details
Published in:International journal of engineering science 2009-05, Vol.47 (5), p.691-699
Main Author: Gouin, Henri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Liquids in contact with solids are submitted to intermolecular forces making liquids heterogeneous and, in a mechanical model, the stress tensor is not any more spherical as in homogeneous bulks. The aim of this article is to show that a square-gradient functional taking into account the volume liquid free energy corrected with two surface liquid density functionals is a mean field approximation allowing to study structures of very thin liquid nanofilms near plane solid walls. The model determines analytically the concept of disjoining pressure for liquid films of thicknesses of a very few number of nanometers and yields a behavior in good agreement with the shapes of experimental curves carried out by Derjaguin and his successors.
ISSN:0020-7225
1879-2197
DOI:10.1016/j.ijengsci.2009.01.006