Loading…
Strain gradient plasticity to study hardness behavior of magnetite (Fe3O4) under multicyclic indentation
The hardness of a material is generally affected by the indentation size effect. The strain gradient plasticity (SGP) theory is largely used to study this load dependence because it links the hardness to the intrinsic properties of the material. However, the characteristic scale-length is linked to...
Saved in:
Published in: | Journal of materials research 2009-03, Vol.24 (3), p.749-759 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The hardness of a material is generally affected by the indentation size effect. The strain gradient plasticity (SGP) theory is largely used to study this load dependence because it links the hardness to the intrinsic properties of the material. However, the characteristic scale-length is linked to the macrohardness, impeding any sound discussion. To find a relevant parameter, we suggest introducing a hardness length-scale factor that only depends on the shear modulus and the Burgers vector of the material and is easily calculable from the relation of the SGP theory. The variation of the hardness length-scale factor is thereafter used to discuss the hardness behavior of a magnetite crystal, the objective being to study the effect of the cumulative plasticity resulting from cyclic indentation. As a main result, the hardness length-scale factor is found to be constant by applying repeated cycles at a constant peak load whereas the macrohardness and the characteristic scale-length are both cycle dependent. When using incremental loads, the hardness length-scale factor monotonically decreases between two limits corresponding to those obtained at high and low loading rates, while the dwell-load duration increases. The physical meaning of such behavior is based on the modification of the dislocation network during the indentation process depending on the deformation rate. |
---|---|
ISSN: | 0884-2914 2044-5326 |
DOI: | 10.1557/jmr.2009.0098 |