Loading…

A conservative feature subset selection algorithm with missing data

This paper introduces a novel conservative feature subset selection method with incomplete data sets. The method is conservative in the sense that it selects the minimal subset of features that renders the rest of the features independent of the target (the class variable) without making any assumpt...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) 2010-01, Vol.73 (4), p.585-590
Main Authors: Aussem, Alex, Rodrigues de Morais, Sergio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c340t-ad2cb18246b3d7059c562777ff81494211fab9e2bec09945616aaf385178f7373
cites cdi_FETCH-LOGICAL-c340t-ad2cb18246b3d7059c562777ff81494211fab9e2bec09945616aaf385178f7373
container_end_page 590
container_issue 4
container_start_page 585
container_title Neurocomputing (Amsterdam)
container_volume 73
creator Aussem, Alex
Rodrigues de Morais, Sergio
description This paper introduces a novel conservative feature subset selection method with incomplete data sets. The method is conservative in the sense that it selects the minimal subset of features that renders the rest of the features independent of the target (the class variable) without making any assumption about the missing data mechanism. This is achieved in the context of determining the Markov blanket of the target that reflects the worst-case assumption about the missing data mechanism, including the case when data are not missing at random. An application of the method on synthetic and real-world incomplete data is carried out to illustrate its practical relevance. The method is compared against state-of-the-art approaches such as the expectation–maximization (EM) algorithm and the available case technique.
doi_str_mv 10.1016/j.neucom.2009.05.019
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00383775v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925231209003737</els_id><sourcerecordid>oai_HAL_hal_00383775v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c340t-ad2cb18246b3d7059c562777ff81494211fab9e2bec09945616aaf385178f7373</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-Aw-9emidSZomuQjL4hcseNFzSNNkN0s_JOlW_Pd2WfHoZQaG93lhHkJuEQoErO73Re8OdugKCqAK4AWgOiMLlILmksrqnCxAUZ5ThvSSXKW0B0CBVC3IepXZoU8uTmYMk8u8M-Mhuiwd6uTGLLnW2TEMfWba7RDDuOuyr3lmXUgp9NusMaO5JhfetMnd_O4l-Xh6fF-_5Ju359f1apNbVsKYm4baGiUtq5o1AriyvKJCCO8llqqkiN7UytHaWVCq5BVWxngmOQrpBRNsSe5OvTvT6s8YOhO_9WCCfllt9PEGwCQTgk84Z8tT1sYhpej8H4Cgj9L0Xp-k6aM0DVzP0mbs4YS5-Y8puKiTDa63rglxFqGbIfxf8AMGKXa-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A conservative feature subset selection algorithm with missing data</title><source>ScienceDirect Journals</source><creator>Aussem, Alex ; Rodrigues de Morais, Sergio</creator><creatorcontrib>Aussem, Alex ; Rodrigues de Morais, Sergio</creatorcontrib><description>This paper introduces a novel conservative feature subset selection method with incomplete data sets. The method is conservative in the sense that it selects the minimal subset of features that renders the rest of the features independent of the target (the class variable) without making any assumption about the missing data mechanism. This is achieved in the context of determining the Markov blanket of the target that reflects the worst-case assumption about the missing data mechanism, including the case when data are not missing at random. An application of the method on synthetic and real-world incomplete data is carried out to illustrate its practical relevance. The method is compared against state-of-the-art approaches such as the expectation–maximization (EM) algorithm and the available case technique.</description><identifier>ISSN: 0925-2312</identifier><identifier>EISSN: 1872-8286</identifier><identifier>DOI: 10.1016/j.neucom.2009.05.019</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bayesian networks ; Computer Science ; Feature selection ; Markov boundary ; Missing data ; Neural and Evolutionary Computing</subject><ispartof>Neurocomputing (Amsterdam), 2010-01, Vol.73 (4), p.585-590</ispartof><rights>2009 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c340t-ad2cb18246b3d7059c562777ff81494211fab9e2bec09945616aaf385178f7373</citedby><cites>FETCH-LOGICAL-c340t-ad2cb18246b3d7059c562777ff81494211fab9e2bec09945616aaf385178f7373</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00383775$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aussem, Alex</creatorcontrib><creatorcontrib>Rodrigues de Morais, Sergio</creatorcontrib><title>A conservative feature subset selection algorithm with missing data</title><title>Neurocomputing (Amsterdam)</title><description>This paper introduces a novel conservative feature subset selection method with incomplete data sets. The method is conservative in the sense that it selects the minimal subset of features that renders the rest of the features independent of the target (the class variable) without making any assumption about the missing data mechanism. This is achieved in the context of determining the Markov blanket of the target that reflects the worst-case assumption about the missing data mechanism, including the case when data are not missing at random. An application of the method on synthetic and real-world incomplete data is carried out to illustrate its practical relevance. The method is compared against state-of-the-art approaches such as the expectation–maximization (EM) algorithm and the available case technique.</description><subject>Bayesian networks</subject><subject>Computer Science</subject><subject>Feature selection</subject><subject>Markov boundary</subject><subject>Missing data</subject><subject>Neural and Evolutionary Computing</subject><issn>0925-2312</issn><issn>1872-8286</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-Aw-9emidSZomuQjL4hcseNFzSNNkN0s_JOlW_Pd2WfHoZQaG93lhHkJuEQoErO73Re8OdugKCqAK4AWgOiMLlILmksrqnCxAUZ5ThvSSXKW0B0CBVC3IepXZoU8uTmYMk8u8M-Mhuiwd6uTGLLnW2TEMfWba7RDDuOuyr3lmXUgp9NusMaO5JhfetMnd_O4l-Xh6fF-_5Ju359f1apNbVsKYm4baGiUtq5o1AriyvKJCCO8llqqkiN7UytHaWVCq5BVWxngmOQrpBRNsSe5OvTvT6s8YOhO_9WCCfllt9PEGwCQTgk84Z8tT1sYhpej8H4Cgj9L0Xp-k6aM0DVzP0mbs4YS5-Y8puKiTDa63rglxFqGbIfxf8AMGKXa-</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Aussem, Alex</creator><creator>Rodrigues de Morais, Sergio</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>20100101</creationdate><title>A conservative feature subset selection algorithm with missing data</title><author>Aussem, Alex ; Rodrigues de Morais, Sergio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c340t-ad2cb18246b3d7059c562777ff81494211fab9e2bec09945616aaf385178f7373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bayesian networks</topic><topic>Computer Science</topic><topic>Feature selection</topic><topic>Markov boundary</topic><topic>Missing data</topic><topic>Neural and Evolutionary Computing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aussem, Alex</creatorcontrib><creatorcontrib>Rodrigues de Morais, Sergio</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neurocomputing (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aussem, Alex</au><au>Rodrigues de Morais, Sergio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A conservative feature subset selection algorithm with missing data</atitle><jtitle>Neurocomputing (Amsterdam)</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>73</volume><issue>4</issue><spage>585</spage><epage>590</epage><pages>585-590</pages><issn>0925-2312</issn><eissn>1872-8286</eissn><abstract>This paper introduces a novel conservative feature subset selection method with incomplete data sets. The method is conservative in the sense that it selects the minimal subset of features that renders the rest of the features independent of the target (the class variable) without making any assumption about the missing data mechanism. This is achieved in the context of determining the Markov blanket of the target that reflects the worst-case assumption about the missing data mechanism, including the case when data are not missing at random. An application of the method on synthetic and real-world incomplete data is carried out to illustrate its practical relevance. The method is compared against state-of-the-art approaches such as the expectation–maximization (EM) algorithm and the available case technique.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.neucom.2009.05.019</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2312
ispartof Neurocomputing (Amsterdam), 2010-01, Vol.73 (4), p.585-590
issn 0925-2312
1872-8286
language eng
recordid cdi_hal_primary_oai_HAL_hal_00383775v1
source ScienceDirect Journals
subjects Bayesian networks
Computer Science
Feature selection
Markov boundary
Missing data
Neural and Evolutionary Computing
title A conservative feature subset selection algorithm with missing data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A38%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20conservative%20feature%20subset%20selection%20algorithm%20with%20missing%20data&rft.jtitle=Neurocomputing%20(Amsterdam)&rft.au=Aussem,%20Alex&rft.date=2010-01-01&rft.volume=73&rft.issue=4&rft.spage=585&rft.epage=590&rft.pages=585-590&rft.issn=0925-2312&rft.eissn=1872-8286&rft_id=info:doi/10.1016/j.neucom.2009.05.019&rft_dat=%3Chal_cross%3Eoai_HAL_hal_00383775v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c340t-ad2cb18246b3d7059c562777ff81494211fab9e2bec09945616aaf385178f7373%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true