Loading…

On the cut-off phenomenon for the transitivity of randomly generated subgroups

Consider $K\geq2$ independent copies of the random walk on the symmetric group $S_N$ starting from the identity and generated by the products of either independent uniform transpositions or independent uniform neighbor transpositions. At any time $n\in\NN$, let $G_n$ be the subgroup of $S_N$ generat...

Full description

Saved in:
Bibliographic Details
Published in:Random structures & algorithms 2012-03, Vol.40 (2), p.189-219
Main Authors: Galligo, André, Miclo, Laurent
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 219
container_issue 2
container_start_page 189
container_title Random structures & algorithms
container_volume 40
creator Galligo, André
Miclo, Laurent
description Consider $K\geq2$ independent copies of the random walk on the symmetric group $S_N$ starting from the identity and generated by the products of either independent uniform transpositions or independent uniform neighbor transpositions. At any time $n\in\NN$, let $G_n$ be the subgroup of $S_N$ generated by the $K$ positions of the chains. In the uniform transposition model, we prove that there is a cut-off phenomenon at time $N\ln(N)/(2K)$ for the non-existence of fixed point of $G_n$ and for the transitivity of $G_n$, thus showing that these properties occur before the chains have reached equilibrium. In the uniform neighbor transposition model, a transition for the non-existence of a fixed point of $G_n$ appears at time of order $N^{1+\frac 2K}$ (at least for $K\geq3$), but there is no cut-off phenomenon. In the latter model, we recover a cut-off phenomenon for the non-existence of a fixed point at a time proportional to $N$ by allowing the number $K$ to be proportional to $\ln(N)$. The main tools of the proofs are spectral analysis and coupling techniques.
format article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00384188v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_00384188v2</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_00384188v23</originalsourceid><addsrcrecordid>eNqVTrsKwjAUDaJgffzDXR0CMSmYjiJKB9HFPUSbtJE2KUla6N_bij_gcDjP4cxQsicZxzTd8_mkU4ozzugSrUJ4E0IOjLIE3e4WYqXg1UXstIa2UtY1Iyxo579V9NIGE01v4gBOw2gL19QDlMoqL6MqIHTP0ruuDRu00LIOavvjNdpdzo9TjitZi9abRvpBOGlEfryKKSOE8fEh7yn7Z_sBMBhD-w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the cut-off phenomenon for the transitivity of randomly generated subgroups</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Galligo, André ; Miclo, Laurent</creator><creatorcontrib>Galligo, André ; Miclo, Laurent</creatorcontrib><description>Consider $K\geq2$ independent copies of the random walk on the symmetric group $S_N$ starting from the identity and generated by the products of either independent uniform transpositions or independent uniform neighbor transpositions. At any time $n\in\NN$, let $G_n$ be the subgroup of $S_N$ generated by the $K$ positions of the chains. In the uniform transposition model, we prove that there is a cut-off phenomenon at time $N\ln(N)/(2K)$ for the non-existence of fixed point of $G_n$ and for the transitivity of $G_n$, thus showing that these properties occur before the chains have reached equilibrium. In the uniform neighbor transposition model, a transition for the non-existence of a fixed point of $G_n$ appears at time of order $N^{1+\frac 2K}$ (at least for $K\geq3$), but there is no cut-off phenomenon. In the latter model, we recover a cut-off phenomenon for the non-existence of a fixed point at a time proportional to $N$ by allowing the number $K$ to be proportional to $\ln(N)$. The main tools of the proofs are spectral analysis and coupling techniques.</description><identifier>ISSN: 1042-9832</identifier><identifier>EISSN: 1098-2418</identifier><language>eng</language><publisher>Wiley</publisher><subject>Mathematics ; Probability</subject><ispartof>Random structures &amp; algorithms, 2012-03, Vol.40 (2), p.189-219</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5502-2862 ; 0000-0001-5502-2862</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00384188$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Galligo, André</creatorcontrib><creatorcontrib>Miclo, Laurent</creatorcontrib><title>On the cut-off phenomenon for the transitivity of randomly generated subgroups</title><title>Random structures &amp; algorithms</title><description>Consider $K\geq2$ independent copies of the random walk on the symmetric group $S_N$ starting from the identity and generated by the products of either independent uniform transpositions or independent uniform neighbor transpositions. At any time $n\in\NN$, let $G_n$ be the subgroup of $S_N$ generated by the $K$ positions of the chains. In the uniform transposition model, we prove that there is a cut-off phenomenon at time $N\ln(N)/(2K)$ for the non-existence of fixed point of $G_n$ and for the transitivity of $G_n$, thus showing that these properties occur before the chains have reached equilibrium. In the uniform neighbor transposition model, a transition for the non-existence of a fixed point of $G_n$ appears at time of order $N^{1+\frac 2K}$ (at least for $K\geq3$), but there is no cut-off phenomenon. In the latter model, we recover a cut-off phenomenon for the non-existence of a fixed point at a time proportional to $N$ by allowing the number $K$ to be proportional to $\ln(N)$. The main tools of the proofs are spectral analysis and coupling techniques.</description><subject>Mathematics</subject><subject>Probability</subject><issn>1042-9832</issn><issn>1098-2418</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqVTrsKwjAUDaJgffzDXR0CMSmYjiJKB9HFPUSbtJE2KUla6N_bij_gcDjP4cxQsicZxzTd8_mkU4ozzugSrUJ4E0IOjLIE3e4WYqXg1UXstIa2UtY1Iyxo579V9NIGE01v4gBOw2gL19QDlMoqL6MqIHTP0ruuDRu00LIOavvjNdpdzo9TjitZi9abRvpBOGlEfryKKSOE8fEh7yn7Z_sBMBhD-w</recordid><startdate>201203</startdate><enddate>201203</enddate><creator>Galligo, André</creator><creator>Miclo, Laurent</creator><general>Wiley</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5502-2862</orcidid><orcidid>https://orcid.org/0000-0001-5502-2862</orcidid></search><sort><creationdate>201203</creationdate><title>On the cut-off phenomenon for the transitivity of randomly generated subgroups</title><author>Galligo, André ; Miclo, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_00384188v23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Mathematics</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galligo, André</creatorcontrib><creatorcontrib>Miclo, Laurent</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Random structures &amp; algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galligo, André</au><au>Miclo, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the cut-off phenomenon for the transitivity of randomly generated subgroups</atitle><jtitle>Random structures &amp; algorithms</jtitle><date>2012-03</date><risdate>2012</risdate><volume>40</volume><issue>2</issue><spage>189</spage><epage>219</epage><pages>189-219</pages><issn>1042-9832</issn><eissn>1098-2418</eissn><abstract>Consider $K\geq2$ independent copies of the random walk on the symmetric group $S_N$ starting from the identity and generated by the products of either independent uniform transpositions or independent uniform neighbor transpositions. At any time $n\in\NN$, let $G_n$ be the subgroup of $S_N$ generated by the $K$ positions of the chains. In the uniform transposition model, we prove that there is a cut-off phenomenon at time $N\ln(N)/(2K)$ for the non-existence of fixed point of $G_n$ and for the transitivity of $G_n$, thus showing that these properties occur before the chains have reached equilibrium. In the uniform neighbor transposition model, a transition for the non-existence of a fixed point of $G_n$ appears at time of order $N^{1+\frac 2K}$ (at least for $K\geq3$), but there is no cut-off phenomenon. In the latter model, we recover a cut-off phenomenon for the non-existence of a fixed point at a time proportional to $N$ by allowing the number $K$ to be proportional to $\ln(N)$. The main tools of the proofs are spectral analysis and coupling techniques.</abstract><pub>Wiley</pub><orcidid>https://orcid.org/0000-0001-5502-2862</orcidid><orcidid>https://orcid.org/0000-0001-5502-2862</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1042-9832
ispartof Random structures & algorithms, 2012-03, Vol.40 (2), p.189-219
issn 1042-9832
1098-2418
language eng
recordid cdi_hal_primary_oai_HAL_hal_00384188v2
source Wiley-Blackwell Read & Publish Collection
subjects Mathematics
Probability
title On the cut-off phenomenon for the transitivity of randomly generated subgroups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A24%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20cut-off%20phenomenon%20for%20the%20transitivity%20of%20randomly%20generated%20subgroups&rft.jtitle=Random%20structures%20&%20algorithms&rft.au=Galligo,%20Andr%C3%A9&rft.date=2012-03&rft.volume=40&rft.issue=2&rft.spage=189&rft.epage=219&rft.pages=189-219&rft.issn=1042-9832&rft.eissn=1098-2418&rft_id=info:doi/&rft_dat=%3Chal%3Eoai_HAL_hal_00384188v2%3C/hal%3E%3Cgrp_id%3Ecdi_FETCH-hal_primary_oai_HAL_hal_00384188v23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true