Loading…
Adaptive multiresolution analysis based on anisotropic triangulations
A simple greedy refinement procedure for the generation of data-adapted triangulations is proposed and studied. Given a function f (\mathcal {D}_j)_{j\geq 0} on these triangulations. The refinement procedure consists in bisecting a triangle T and its piecewise polynomial approximation after T norm o...
Saved in:
Published in: | Mathematics of computation 2012-04, Vol.81 (278), p.789-810 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a405t-e780da691f11a23dd161e3e41f5c07f54785b6391e3214679500eeddce692663 |
---|---|
cites | |
container_end_page | 810 |
container_issue | 278 |
container_start_page | 789 |
container_title | Mathematics of computation |
container_volume | 81 |
creator | COHEN, ALBERT DYN, NIRA HECHT, FRÉDÉRIC MIREBEAU, JEAN-MARIE |
description | A simple greedy refinement procedure for the generation of data-adapted triangulations is proposed and studied. Given a function f (\mathcal {D}_j)_{j\geq 0} on these triangulations. The refinement procedure consists in bisecting a triangle T and its piecewise polynomial approximation after T norm of all these approximations. Numerical tests performed in the case of piecewise linear approximation of functions with analytic expressions or of numerical images illustrate the fact that the refinement procedure generates triangles with an optimal aspect ratio (which is dictated by the local Hessian of f functions). |
doi_str_mv | 10.1090/S0025-5718-2011-02495-6 |
format | article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00387804v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23267973</jstor_id><sourcerecordid>23267973</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-e780da691f11a23dd161e3e41f5c07f54785b6391e3214679500eeddce692663</originalsourceid><addsrcrecordid>eNqNkE9Lw0AQxRdRsFY_gpirh9WZzf7LsZRqhYIHe1-22Y1uSZuymxb67U0aydnTwJv33gw_Qp4QXhAKeP0CYIIKhZoyQKTAeCGovCITBK2p1Jxdk8louiV3KW0BAKVQE7KYOXtow8lnu2PdhuhTUx_b0Owzu7f1OYWUbWzyLrsoITVtbA6hzNoY7P77WNvem-7JTWXr5B_-5pSs3xbr-ZKuPt8_5rMVtRxES73S4KwssEK0LHcOJfrcc6xECaoSXGmxkXnRiQy5VIUA8N650suCSZlPyfNQ-2Nrc4hhZ-PZNDaY5Wxleg0g190NfmKdVw3eMjYpRV-NAQTTgzMXcKZnYnpw5gLO9Fceh-Q2tU0cYyxn3Ucq7_Zs2Ntd-nfpLzu_eSI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Adaptive multiresolution analysis based on anisotropic triangulations</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>American Mathematical Society Publications (Freely Accessible)</source><creator>COHEN, ALBERT ; DYN, NIRA ; HECHT, FRÉDÉRIC ; MIREBEAU, JEAN-MARIE</creator><creatorcontrib>COHEN, ALBERT ; DYN, NIRA ; HECHT, FRÉDÉRIC ; MIREBEAU, JEAN-MARIE</creatorcontrib><description>A simple greedy refinement procedure for the generation of data-adapted triangulations is proposed and studied. Given a function f (\mathcal {D}_j)_{j\geq 0} on these triangulations. The refinement procedure consists in bisecting a triangle T and its piecewise polynomial approximation after T norm of all these approximations. Numerical tests performed in the case of piecewise linear approximation of functions with analytic expressions or of numerical images illustrate the fact that the refinement procedure generates triangles with an optimal aspect ratio (which is dictated by the local Hessian of f functions).</description><identifier>ISSN: 0025-5718</identifier><identifier>EISSN: 1088-6842</identifier><identifier>DOI: 10.1090/S0025-5718-2011-02495-6</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Approximation ; Aspect ratio ; Computer Science ; Degrees of polynomials ; Image compression ; Mathematical functions ; Mathematics ; Numerical Analysis ; Polynomials ; Triangles ; Triangulation ; Vertices</subject><ispartof>Mathematics of computation, 2012-04, Vol.81 (278), p.789-810</ispartof><rights>Copyright 2011, American Mathematical Society</rights><rights>2012 American Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-e780da691f11a23dd161e3e41f5c07f54785b6391e3214679500eeddce692663</citedby><orcidid>0000-0002-7356-0872 ; 0000-0003-1337-4012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/mcom/2012-81-278/S0025-5718-2011-02495-6/S0025-5718-2011-02495-6.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/mcom/2012-81-278/S0025-5718-2011-02495-6/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>69,230,314,780,784,885,23324,27924,27925,58238,58471,77838,77848</link.rule.ids><backlink>$$Uhttps://hal.science/hal-00387804$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>COHEN, ALBERT</creatorcontrib><creatorcontrib>DYN, NIRA</creatorcontrib><creatorcontrib>HECHT, FRÉDÉRIC</creatorcontrib><creatorcontrib>MIREBEAU, JEAN-MARIE</creatorcontrib><title>Adaptive multiresolution analysis based on anisotropic triangulations</title><title>Mathematics of computation</title><description>A simple greedy refinement procedure for the generation of data-adapted triangulations is proposed and studied. Given a function f (\mathcal {D}_j)_{j\geq 0} on these triangulations. The refinement procedure consists in bisecting a triangle T and its piecewise polynomial approximation after T norm of all these approximations. Numerical tests performed in the case of piecewise linear approximation of functions with analytic expressions or of numerical images illustrate the fact that the refinement procedure generates triangles with an optimal aspect ratio (which is dictated by the local Hessian of f functions).</description><subject>Approximation</subject><subject>Aspect ratio</subject><subject>Computer Science</subject><subject>Degrees of polynomials</subject><subject>Image compression</subject><subject>Mathematical functions</subject><subject>Mathematics</subject><subject>Numerical Analysis</subject><subject>Polynomials</subject><subject>Triangles</subject><subject>Triangulation</subject><subject>Vertices</subject><issn>0025-5718</issn><issn>1088-6842</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkE9Lw0AQxRdRsFY_gpirh9WZzf7LsZRqhYIHe1-22Y1uSZuymxb67U0aydnTwJv33gw_Qp4QXhAKeP0CYIIKhZoyQKTAeCGovCITBK2p1Jxdk8louiV3KW0BAKVQE7KYOXtow8lnu2PdhuhTUx_b0Owzu7f1OYWUbWzyLrsoITVtbA6hzNoY7P77WNvem-7JTWXr5B_-5pSs3xbr-ZKuPt8_5rMVtRxES73S4KwssEK0LHcOJfrcc6xECaoSXGmxkXnRiQy5VIUA8N650suCSZlPyfNQ-2Nrc4hhZ-PZNDaY5Wxleg0g190NfmKdVw3eMjYpRV-NAQTTgzMXcKZnYnpw5gLO9Fceh-Q2tU0cYyxn3Ucq7_Zs2Ntd-nfpLzu_eSI</recordid><startdate>20120401</startdate><enddate>20120401</enddate><creator>COHEN, ALBERT</creator><creator>DYN, NIRA</creator><creator>HECHT, FRÉDÉRIC</creator><creator>MIREBEAU, JEAN-MARIE</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7356-0872</orcidid><orcidid>https://orcid.org/0000-0003-1337-4012</orcidid></search><sort><creationdate>20120401</creationdate><title>Adaptive multiresolution analysis based on anisotropic triangulations</title><author>COHEN, ALBERT ; DYN, NIRA ; HECHT, FRÉDÉRIC ; MIREBEAU, JEAN-MARIE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-e780da691f11a23dd161e3e41f5c07f54785b6391e3214679500eeddce692663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Aspect ratio</topic><topic>Computer Science</topic><topic>Degrees of polynomials</topic><topic>Image compression</topic><topic>Mathematical functions</topic><topic>Mathematics</topic><topic>Numerical Analysis</topic><topic>Polynomials</topic><topic>Triangles</topic><topic>Triangulation</topic><topic>Vertices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COHEN, ALBERT</creatorcontrib><creatorcontrib>DYN, NIRA</creatorcontrib><creatorcontrib>HECHT, FRÉDÉRIC</creatorcontrib><creatorcontrib>MIREBEAU, JEAN-MARIE</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematics of computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COHEN, ALBERT</au><au>DYN, NIRA</au><au>HECHT, FRÉDÉRIC</au><au>MIREBEAU, JEAN-MARIE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive multiresolution analysis based on anisotropic triangulations</atitle><jtitle>Mathematics of computation</jtitle><date>2012-04-01</date><risdate>2012</risdate><volume>81</volume><issue>278</issue><spage>789</spage><epage>810</epage><pages>789-810</pages><issn>0025-5718</issn><eissn>1088-6842</eissn><abstract>A simple greedy refinement procedure for the generation of data-adapted triangulations is proposed and studied. Given a function f (\mathcal {D}_j)_{j\geq 0} on these triangulations. The refinement procedure consists in bisecting a triangle T and its piecewise polynomial approximation after T norm of all these approximations. Numerical tests performed in the case of piecewise linear approximation of functions with analytic expressions or of numerical images illustrate the fact that the refinement procedure generates triangles with an optimal aspect ratio (which is dictated by the local Hessian of f functions).</abstract><pub>American Mathematical Society</pub><doi>10.1090/S0025-5718-2011-02495-6</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-7356-0872</orcidid><orcidid>https://orcid.org/0000-0003-1337-4012</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5718 |
ispartof | Mathematics of computation, 2012-04, Vol.81 (278), p.789-810 |
issn | 0025-5718 1088-6842 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00387804v2 |
source | JSTOR Archival Journals and Primary Sources Collection; American Mathematical Society Publications (Freely Accessible) |
subjects | Approximation Aspect ratio Computer Science Degrees of polynomials Image compression Mathematical functions Mathematics Numerical Analysis Polynomials Triangles Triangulation Vertices |
title | Adaptive multiresolution analysis based on anisotropic triangulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20multiresolution%20analysis%20based%20on%20anisotropic%20triangulations&rft.jtitle=Mathematics%20of%20computation&rft.au=COHEN,%20ALBERT&rft.date=2012-04-01&rft.volume=81&rft.issue=278&rft.spage=789&rft.epage=810&rft.pages=789-810&rft.issn=0025-5718&rft.eissn=1088-6842&rft_id=info:doi/10.1090/S0025-5718-2011-02495-6&rft_dat=%3Cjstor_hal_p%3E23267973%3C/jstor_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a405t-e780da691f11a23dd161e3e41f5c07f54785b6391e3214679500eeddce692663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=23267973&rfr_iscdi=true |