Loading…
Spectral discretization of Darcy’s equations with pressure dependent porosity
We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with boundary conditions on the pressure around a circular well. When the boundary pressure presents high variations, the permeability of the medium depends on the pressure, so that the model is nonl...
Saved in:
Published in: | Applied mathematics and computation 2010-11, Vol.217 (5), p.1838-1856 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c436t-dc8ad14fde5aa6e243f7d74df353376c3a84825a41e729ae781cdec8e119a3cd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c436t-dc8ad14fde5aa6e243f7d74df353376c3a84825a41e729ae781cdec8e119a3cd3 |
container_end_page | 1856 |
container_issue | 5 |
container_start_page | 1838 |
container_title | Applied mathematics and computation |
container_volume | 217 |
creator | Azaïez, Mejdi Ben Belgacem, Faker Bernardi, Christine Chorfi, Nejmeddine |
description | We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with boundary conditions on the pressure around a circular well. When the boundary pressure presents high variations, the permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a spectral discretization of the resulting system of equations which takes into account the axisymmetry of the domain and of the flow. We prove optimal error estimates and present some numerical experiments which confirm the interest of the discretization.
Nous considérons l’écoulement d’un fluide visqueux incompressible dans un milieu poreux rigide lorsque la pression donnée sur la partie de la frontiére correspondant à un puits circulaire présente de fortes variations. La perméabilité du milieu dépend alors de la pression, de sorte que le modèle est non linéaire. Nous proposons une discrétisation spectrale de ce modèle qui tient compte de l’axisymétrie du domaine et de l’écoulement. Nous prouvons des estimations d’erreur optimales et présentons quelques expériences numériques qui confirment l’intérêt de la discrétisation. |
doi_str_mv | 10.1016/j.amc.2010.06.014 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00387808v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300310006995</els_id><sourcerecordid>849463216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-dc8ad14fde5aa6e243f7d74df353376c3a84825a41e729ae781cdec8e119a3cd3</originalsourceid><addsrcrecordid>eNp9kU1OwzAQhS0EEqVwAHbZIMQixY4d2xErxL9UiQWwtkb2RHWVJsFOQWXFNbgeJ8GlFUtWI4--eTPvmZBjRieMMnk-n8DCTgqa3lROKBM7ZMS04nkpRbVLRpRWMueU8n1yEOOcUqokEyPy-NSjHQI0mfPRBhz8Bwy-a7Ouzq4h2NX351fM8HX5243Zux9mWR8wxmXAzGGPrcN2yPoudNEPq0OyV0MT8Whbx-Tl9ub56j6fPt49XF1Ocyu4HHJnNTgmaoclgMRC8Fo5JVzNS86VtBy00EUJgqEqKkClmXVoNTJWAbeOj8nZRncGjemDX0BYmQ68ub-cmnUvWdVKU_3GEnu6YfvQvS4xDmaRvGLTQIvdMhotKiF5wWQi2Ya0yU0MWP9JM2rWOZu5STmbdc6GSpNyTjMnW3WIFpo6QGt9_BssuOalousrLjYcpljePAYTrcfWovMhfYFxnf9nyw_O6ZRF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849463216</pqid></control><display><type>article</type><title>Spectral discretization of Darcy’s equations with pressure dependent porosity</title><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Azaïez, Mejdi ; Ben Belgacem, Faker ; Bernardi, Christine ; Chorfi, Nejmeddine</creator><creatorcontrib>Azaïez, Mejdi ; Ben Belgacem, Faker ; Bernardi, Christine ; Chorfi, Nejmeddine</creatorcontrib><description>We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with boundary conditions on the pressure around a circular well. When the boundary pressure presents high variations, the permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a spectral discretization of the resulting system of equations which takes into account the axisymmetry of the domain and of the flow. We prove optimal error estimates and present some numerical experiments which confirm the interest of the discretization.
Nous considérons l’écoulement d’un fluide visqueux incompressible dans un milieu poreux rigide lorsque la pression donnée sur la partie de la frontiére correspondant à un puits circulaire présente de fortes variations. La perméabilité du milieu dépend alors de la pression, de sorte que le modèle est non linéaire. Nous proposons une discrétisation spectrale de ce modèle qui tient compte de l’axisymétrie du domaine et de l’écoulement. Nous prouvons des estimations d’erreur optimales et présentons quelques expériences numériques qui confirment l’intérêt de la discrétisation.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2010.06.014</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Axisymmetric domain ; Boundaries ; Computer Science ; Darcy’s equations ; Discretization ; Estimates ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Mathematics ; Nonlinear algebraic and transcendental equations ; Numerical Analysis ; Numerical analysis. Scientific computation ; Optimization ; Porosity ; Pressure dependent porosity ; Sciences and techniques of general use ; Spectra ; Spectral discretization</subject><ispartof>Applied mathematics and computation, 2010-11, Vol.217 (5), p.1838-1856</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-dc8ad14fde5aa6e243f7d74df353376c3a84825a41e729ae781cdec8e119a3cd3</citedby><cites>FETCH-LOGICAL-c436t-dc8ad14fde5aa6e243f7d74df353376c3a84825a41e729ae781cdec8e119a3cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300310006995$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3420,3555,27915,27916,45963,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23835701$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00387808$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Azaïez, Mejdi</creatorcontrib><creatorcontrib>Ben Belgacem, Faker</creatorcontrib><creatorcontrib>Bernardi, Christine</creatorcontrib><creatorcontrib>Chorfi, Nejmeddine</creatorcontrib><title>Spectral discretization of Darcy’s equations with pressure dependent porosity</title><title>Applied mathematics and computation</title><description>We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with boundary conditions on the pressure around a circular well. When the boundary pressure presents high variations, the permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a spectral discretization of the resulting system of equations which takes into account the axisymmetry of the domain and of the flow. We prove optimal error estimates and present some numerical experiments which confirm the interest of the discretization.
Nous considérons l’écoulement d’un fluide visqueux incompressible dans un milieu poreux rigide lorsque la pression donnée sur la partie de la frontiére correspondant à un puits circulaire présente de fortes variations. La perméabilité du milieu dépend alors de la pression, de sorte que le modèle est non linéaire. Nous proposons une discrétisation spectrale de ce modèle qui tient compte de l’axisymétrie du domaine et de l’écoulement. Nous prouvons des estimations d’erreur optimales et présentons quelques expériences numériques qui confirment l’intérêt de la discrétisation.</description><subject>Axisymmetric domain</subject><subject>Boundaries</subject><subject>Computer Science</subject><subject>Darcy’s equations</subject><subject>Discretization</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical Analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Optimization</subject><subject>Porosity</subject><subject>Pressure dependent porosity</subject><subject>Sciences and techniques of general use</subject><subject>Spectra</subject><subject>Spectral discretization</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kU1OwzAQhS0EEqVwAHbZIMQixY4d2xErxL9UiQWwtkb2RHWVJsFOQWXFNbgeJ8GlFUtWI4--eTPvmZBjRieMMnk-n8DCTgqa3lROKBM7ZMS04nkpRbVLRpRWMueU8n1yEOOcUqokEyPy-NSjHQI0mfPRBhz8Bwy-a7Ouzq4h2NX351fM8HX5243Zux9mWR8wxmXAzGGPrcN2yPoudNEPq0OyV0MT8Whbx-Tl9ub56j6fPt49XF1Ocyu4HHJnNTgmaoclgMRC8Fo5JVzNS86VtBy00EUJgqEqKkClmXVoNTJWAbeOj8nZRncGjemDX0BYmQ68ub-cmnUvWdVKU_3GEnu6YfvQvS4xDmaRvGLTQIvdMhotKiF5wWQi2Ya0yU0MWP9JM2rWOZu5STmbdc6GSpNyTjMnW3WIFpo6QGt9_BssuOalousrLjYcpljePAYTrcfWovMhfYFxnf9nyw_O6ZRF</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Azaïez, Mejdi</creator><creator>Ben Belgacem, Faker</creator><creator>Bernardi, Christine</creator><creator>Chorfi, Nejmeddine</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20101101</creationdate><title>Spectral discretization of Darcy’s equations with pressure dependent porosity</title><author>Azaïez, Mejdi ; Ben Belgacem, Faker ; Bernardi, Christine ; Chorfi, Nejmeddine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-dc8ad14fde5aa6e243f7d74df353376c3a84825a41e729ae781cdec8e119a3cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Axisymmetric domain</topic><topic>Boundaries</topic><topic>Computer Science</topic><topic>Darcy’s equations</topic><topic>Discretization</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical Analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Optimization</topic><topic>Porosity</topic><topic>Pressure dependent porosity</topic><topic>Sciences and techniques of general use</topic><topic>Spectra</topic><topic>Spectral discretization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azaïez, Mejdi</creatorcontrib><creatorcontrib>Ben Belgacem, Faker</creatorcontrib><creatorcontrib>Bernardi, Christine</creatorcontrib><creatorcontrib>Chorfi, Nejmeddine</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azaïez, Mejdi</au><au>Ben Belgacem, Faker</au><au>Bernardi, Christine</au><au>Chorfi, Nejmeddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral discretization of Darcy’s equations with pressure dependent porosity</atitle><jtitle>Applied mathematics and computation</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>217</volume><issue>5</issue><spage>1838</spage><epage>1856</epage><pages>1838-1856</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with boundary conditions on the pressure around a circular well. When the boundary pressure presents high variations, the permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a spectral discretization of the resulting system of equations which takes into account the axisymmetry of the domain and of the flow. We prove optimal error estimates and present some numerical experiments which confirm the interest of the discretization.
Nous considérons l’écoulement d’un fluide visqueux incompressible dans un milieu poreux rigide lorsque la pression donnée sur la partie de la frontiére correspondant à un puits circulaire présente de fortes variations. La perméabilité du milieu dépend alors de la pression, de sorte que le modèle est non linéaire. Nous proposons une discrétisation spectrale de ce modèle qui tient compte de l’axisymétrie du domaine et de l’écoulement. Nous prouvons des estimations d’erreur optimales et présentons quelques expériences numériques qui confirment l’intérêt de la discrétisation.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2010.06.014</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0096-3003 |
ispartof | Applied mathematics and computation, 2010-11, Vol.217 (5), p.1838-1856 |
issn | 0096-3003 1873-5649 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00387808v1 |
source | ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT] |
subjects | Axisymmetric domain Boundaries Computer Science Darcy’s equations Discretization Estimates Exact sciences and technology Mathematical analysis Mathematical models Mathematics Nonlinear algebraic and transcendental equations Numerical Analysis Numerical analysis. Scientific computation Optimization Porosity Pressure dependent porosity Sciences and techniques of general use Spectra Spectral discretization |
title | Spectral discretization of Darcy’s equations with pressure dependent porosity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20discretization%20of%20Darcy%E2%80%99s%20equations%20with%20pressure%20dependent%20porosity&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Aza%C3%AFez,%20Mejdi&rft.date=2010-11-01&rft.volume=217&rft.issue=5&rft.spage=1838&rft.epage=1856&rft.pages=1838-1856&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2010.06.014&rft_dat=%3Cproquest_hal_p%3E849463216%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-dc8ad14fde5aa6e243f7d74df353376c3a84825a41e729ae781cdec8e119a3cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849463216&rft_id=info:pmid/&rfr_iscdi=true |