Loading…

Spectral discretization of Darcy’s equations with pressure dependent porosity

We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with boundary conditions on the pressure around a circular well. When the boundary pressure presents high variations, the permeability of the medium depends on the pressure, so that the model is nonl...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and computation 2010-11, Vol.217 (5), p.1838-1856
Main Authors: Azaïez, Mejdi, Ben Belgacem, Faker, Bernardi, Christine, Chorfi, Nejmeddine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c436t-dc8ad14fde5aa6e243f7d74df353376c3a84825a41e729ae781cdec8e119a3cd3
cites cdi_FETCH-LOGICAL-c436t-dc8ad14fde5aa6e243f7d74df353376c3a84825a41e729ae781cdec8e119a3cd3
container_end_page 1856
container_issue 5
container_start_page 1838
container_title Applied mathematics and computation
container_volume 217
creator Azaïez, Mejdi
Ben Belgacem, Faker
Bernardi, Christine
Chorfi, Nejmeddine
description We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with boundary conditions on the pressure around a circular well. When the boundary pressure presents high variations, the permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a spectral discretization of the resulting system of equations which takes into account the axisymmetry of the domain and of the flow. We prove optimal error estimates and present some numerical experiments which confirm the interest of the discretization. Nous considérons l’écoulement d’un fluide visqueux incompressible dans un milieu poreux rigide lorsque la pression donnée sur la partie de la frontiére correspondant à un puits circulaire présente de fortes variations. La perméabilité du milieu dépend alors de la pression, de sorte que le modèle est non linéaire. Nous proposons une discrétisation spectrale de ce modèle qui tient compte de l’axisymétrie du domaine et de l’écoulement. Nous prouvons des estimations d’erreur optimales et présentons quelques expériences numériques qui confirment l’intérêt de la discrétisation.
doi_str_mv 10.1016/j.amc.2010.06.014
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00387808v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0096300310006995</els_id><sourcerecordid>849463216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-dc8ad14fde5aa6e243f7d74df353376c3a84825a41e729ae781cdec8e119a3cd3</originalsourceid><addsrcrecordid>eNp9kU1OwzAQhS0EEqVwAHbZIMQixY4d2xErxL9UiQWwtkb2RHWVJsFOQWXFNbgeJ8GlFUtWI4--eTPvmZBjRieMMnk-n8DCTgqa3lROKBM7ZMS04nkpRbVLRpRWMueU8n1yEOOcUqokEyPy-NSjHQI0mfPRBhz8Bwy-a7Ouzq4h2NX351fM8HX5243Zux9mWR8wxmXAzGGPrcN2yPoudNEPq0OyV0MT8Whbx-Tl9ub56j6fPt49XF1Ocyu4HHJnNTgmaoclgMRC8Fo5JVzNS86VtBy00EUJgqEqKkClmXVoNTJWAbeOj8nZRncGjemDX0BYmQ68ub-cmnUvWdVKU_3GEnu6YfvQvS4xDmaRvGLTQIvdMhotKiF5wWQi2Ya0yU0MWP9JM2rWOZu5STmbdc6GSpNyTjMnW3WIFpo6QGt9_BssuOalousrLjYcpljePAYTrcfWovMhfYFxnf9nyw_O6ZRF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849463216</pqid></control><display><type>article</type><title>Spectral discretization of Darcy’s equations with pressure dependent porosity</title><source>ScienceDirect Journals</source><source>Backfile Package - Mathematics (Legacy) [YMT]</source><creator>Azaïez, Mejdi ; Ben Belgacem, Faker ; Bernardi, Christine ; Chorfi, Nejmeddine</creator><creatorcontrib>Azaïez, Mejdi ; Ben Belgacem, Faker ; Bernardi, Christine ; Chorfi, Nejmeddine</creatorcontrib><description>We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with boundary conditions on the pressure around a circular well. When the boundary pressure presents high variations, the permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a spectral discretization of the resulting system of equations which takes into account the axisymmetry of the domain and of the flow. We prove optimal error estimates and present some numerical experiments which confirm the interest of the discretization. Nous considérons l’écoulement d’un fluide visqueux incompressible dans un milieu poreux rigide lorsque la pression donnée sur la partie de la frontiére correspondant à un puits circulaire présente de fortes variations. La perméabilité du milieu dépend alors de la pression, de sorte que le modèle est non linéaire. Nous proposons une discrétisation spectrale de ce modèle qui tient compte de l’axisymétrie du domaine et de l’écoulement. Nous prouvons des estimations d’erreur optimales et présentons quelques expériences numériques qui confirment l’intérêt de la discrétisation.</description><identifier>ISSN: 0096-3003</identifier><identifier>EISSN: 1873-5649</identifier><identifier>DOI: 10.1016/j.amc.2010.06.014</identifier><identifier>CODEN: AMHCBQ</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Axisymmetric domain ; Boundaries ; Computer Science ; Darcy’s equations ; Discretization ; Estimates ; Exact sciences and technology ; Mathematical analysis ; Mathematical models ; Mathematics ; Nonlinear algebraic and transcendental equations ; Numerical Analysis ; Numerical analysis. Scientific computation ; Optimization ; Porosity ; Pressure dependent porosity ; Sciences and techniques of general use ; Spectra ; Spectral discretization</subject><ispartof>Applied mathematics and computation, 2010-11, Vol.217 (5), p.1838-1856</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-dc8ad14fde5aa6e243f7d74df353376c3a84825a41e729ae781cdec8e119a3cd3</citedby><cites>FETCH-LOGICAL-c436t-dc8ad14fde5aa6e243f7d74df353376c3a84825a41e729ae781cdec8e119a3cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0096300310006995$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3420,3555,27915,27916,45963,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23835701$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00387808$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Azaïez, Mejdi</creatorcontrib><creatorcontrib>Ben Belgacem, Faker</creatorcontrib><creatorcontrib>Bernardi, Christine</creatorcontrib><creatorcontrib>Chorfi, Nejmeddine</creatorcontrib><title>Spectral discretization of Darcy’s equations with pressure dependent porosity</title><title>Applied mathematics and computation</title><description>We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with boundary conditions on the pressure around a circular well. When the boundary pressure presents high variations, the permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a spectral discretization of the resulting system of equations which takes into account the axisymmetry of the domain and of the flow. We prove optimal error estimates and present some numerical experiments which confirm the interest of the discretization. Nous considérons l’écoulement d’un fluide visqueux incompressible dans un milieu poreux rigide lorsque la pression donnée sur la partie de la frontiére correspondant à un puits circulaire présente de fortes variations. La perméabilité du milieu dépend alors de la pression, de sorte que le modèle est non linéaire. Nous proposons une discrétisation spectrale de ce modèle qui tient compte de l’axisymétrie du domaine et de l’écoulement. Nous prouvons des estimations d’erreur optimales et présentons quelques expériences numériques qui confirment l’intérêt de la discrétisation.</description><subject>Axisymmetric domain</subject><subject>Boundaries</subject><subject>Computer Science</subject><subject>Darcy’s equations</subject><subject>Discretization</subject><subject>Estimates</subject><subject>Exact sciences and technology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Nonlinear algebraic and transcendental equations</subject><subject>Numerical Analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Optimization</subject><subject>Porosity</subject><subject>Pressure dependent porosity</subject><subject>Sciences and techniques of general use</subject><subject>Spectra</subject><subject>Spectral discretization</subject><issn>0096-3003</issn><issn>1873-5649</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kU1OwzAQhS0EEqVwAHbZIMQixY4d2xErxL9UiQWwtkb2RHWVJsFOQWXFNbgeJ8GlFUtWI4--eTPvmZBjRieMMnk-n8DCTgqa3lROKBM7ZMS04nkpRbVLRpRWMueU8n1yEOOcUqokEyPy-NSjHQI0mfPRBhz8Bwy-a7Ouzq4h2NX351fM8HX5243Zux9mWR8wxmXAzGGPrcN2yPoudNEPq0OyV0MT8Whbx-Tl9ub56j6fPt49XF1Ocyu4HHJnNTgmaoclgMRC8Fo5JVzNS86VtBy00EUJgqEqKkClmXVoNTJWAbeOj8nZRncGjemDX0BYmQ68ub-cmnUvWdVKU_3GEnu6YfvQvS4xDmaRvGLTQIvdMhotKiF5wWQi2Ya0yU0MWP9JM2rWOZu5STmbdc6GSpNyTjMnW3WIFpo6QGt9_BssuOalousrLjYcpljePAYTrcfWovMhfYFxnf9nyw_O6ZRF</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Azaïez, Mejdi</creator><creator>Ben Belgacem, Faker</creator><creator>Bernardi, Christine</creator><creator>Chorfi, Nejmeddine</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20101101</creationdate><title>Spectral discretization of Darcy’s equations with pressure dependent porosity</title><author>Azaïez, Mejdi ; Ben Belgacem, Faker ; Bernardi, Christine ; Chorfi, Nejmeddine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-dc8ad14fde5aa6e243f7d74df353376c3a84825a41e729ae781cdec8e119a3cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Axisymmetric domain</topic><topic>Boundaries</topic><topic>Computer Science</topic><topic>Darcy’s equations</topic><topic>Discretization</topic><topic>Estimates</topic><topic>Exact sciences and technology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Nonlinear algebraic and transcendental equations</topic><topic>Numerical Analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Optimization</topic><topic>Porosity</topic><topic>Pressure dependent porosity</topic><topic>Sciences and techniques of general use</topic><topic>Spectra</topic><topic>Spectral discretization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Azaïez, Mejdi</creatorcontrib><creatorcontrib>Ben Belgacem, Faker</creatorcontrib><creatorcontrib>Bernardi, Christine</creatorcontrib><creatorcontrib>Chorfi, Nejmeddine</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied mathematics and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azaïez, Mejdi</au><au>Ben Belgacem, Faker</au><au>Bernardi, Christine</au><au>Chorfi, Nejmeddine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral discretization of Darcy’s equations with pressure dependent porosity</atitle><jtitle>Applied mathematics and computation</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>217</volume><issue>5</issue><spage>1838</spage><epage>1856</epage><pages>1838-1856</pages><issn>0096-3003</issn><eissn>1873-5649</eissn><coden>AMHCBQ</coden><abstract>We consider the flow of a viscous incompressible fluid in a rigid homogeneous porous medium provided with boundary conditions on the pressure around a circular well. When the boundary pressure presents high variations, the permeability of the medium depends on the pressure, so that the model is nonlinear. We propose a spectral discretization of the resulting system of equations which takes into account the axisymmetry of the domain and of the flow. We prove optimal error estimates and present some numerical experiments which confirm the interest of the discretization. Nous considérons l’écoulement d’un fluide visqueux incompressible dans un milieu poreux rigide lorsque la pression donnée sur la partie de la frontiére correspondant à un puits circulaire présente de fortes variations. La perméabilité du milieu dépend alors de la pression, de sorte que le modèle est non linéaire. Nous proposons une discrétisation spectrale de ce modèle qui tient compte de l’axisymétrie du domaine et de l’écoulement. Nous prouvons des estimations d’erreur optimales et présentons quelques expériences numériques qui confirment l’intérêt de la discrétisation.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.amc.2010.06.014</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0096-3003
ispartof Applied mathematics and computation, 2010-11, Vol.217 (5), p.1838-1856
issn 0096-3003
1873-5649
language eng
recordid cdi_hal_primary_oai_HAL_hal_00387808v1
source ScienceDirect Journals; Backfile Package - Mathematics (Legacy) [YMT]
subjects Axisymmetric domain
Boundaries
Computer Science
Darcy’s equations
Discretization
Estimates
Exact sciences and technology
Mathematical analysis
Mathematical models
Mathematics
Nonlinear algebraic and transcendental equations
Numerical Analysis
Numerical analysis. Scientific computation
Optimization
Porosity
Pressure dependent porosity
Sciences and techniques of general use
Spectra
Spectral discretization
title Spectral discretization of Darcy’s equations with pressure dependent porosity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A21%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20discretization%20of%20Darcy%E2%80%99s%20equations%20with%20pressure%20dependent%20porosity&rft.jtitle=Applied%20mathematics%20and%20computation&rft.au=Aza%C3%AFez,%20Mejdi&rft.date=2010-11-01&rft.volume=217&rft.issue=5&rft.spage=1838&rft.epage=1856&rft.pages=1838-1856&rft.issn=0096-3003&rft.eissn=1873-5649&rft.coden=AMHCBQ&rft_id=info:doi/10.1016/j.amc.2010.06.014&rft_dat=%3Cproquest_hal_p%3E849463216%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c436t-dc8ad14fde5aa6e243f7d74df353376c3a84825a41e729ae781cdec8e119a3cd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849463216&rft_id=info:pmid/&rfr_iscdi=true