Loading…

Contamination of woody habitat soils around a former lead smelter in the North of France

The contamination of the topsoil of 262 woody habitats around a former lead smelter in the North of France was assessed. In this urbanized and industrialized area, these kinds of habitats comprise of hedges, groves, small woods, anthropogenic creations and one large forest. Except for the latter, wh...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2009-10, Vol.407 (21), p.5564-5577
Main Authors: Douay, F., Pruvot, C., Waterlot, C., Fritsch, C., Fourrier, H., Loriette, A., Bidar, G., Grand, C., de Vaufleury, A., Scheifler, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The contamination of the topsoil of 262 woody habitats around a former lead smelter in the North of France was assessed. In this urbanized and industrialized area, these kinds of habitats comprise of hedges, groves, small woods, anthropogenic creations and one large forest. Except for the latter, which is 3 km away, these woody habitat soils often present a high anthropization degree (a significant amount of pebbles and stones related to human activities) with a high metal contamination. In the studied woody habitat topsoils, Cd, Pb and Zn concentrations largely exceeded those of agricultural topsoils located in the same environmental context. Therefore, atmospheric emissions from the smelter are not the only cause of the high contamination of the woody habitat soils. This last one is related to the nature and the contamination level of deposit in relation with human activities (rubbles, slag, soils, etc). With regard to the results obtained with chemical extractions, the mobility of Cd, Pb and Zn in these soils is also greater than in agricultural soils. In the forest, pollutant solubility is increased by soil acidic pH. The variability of the physico-chemical parameters and the high metal contamination of the topsoils are the main characteristics of the woody habitats located around the former smelter. Although never taken into account during risk assessment, the disturbance of these environmental components could have important biogeochemical impacts (nutrients and metal cycles). Moreover, any modification of the soils' use could potentially cause mobilization and transfer of the pollutants to the biosphere. Six years after the closure of the smelter, and as social and economic pressures considerably increase in this area, the study of these peculiar ecosystems is necessary to understand and predict the bioavailability, transfer, bioaccumulation and effects of pollutants in food chains.
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2009.06.015