Loading…

Glassy materials for lithium batteries: electrochemical properties and devices performances

Amorphous or glassy materials may be used as electrolyte or electrode materials for lithium primary or secondary batteries. A first generation proceeded from classical coin cells in which the organic electrolyte was replaced by a high lithium conductive glassy electrolyte. The solid components were...

Full description

Saved in:
Bibliographic Details
Published in:Journal of power sources 2001-07, Vol.97, p.610-615
Main Authors: Duclot, Michel, Souquet, Jean-Louis
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c467t-3bd7d51091a7d34c29d45193e8c3194b8e2e5c3582c8b8e8efac8fc45c0c3b423
cites
container_end_page 615
container_issue
container_start_page 610
container_title Journal of power sources
container_volume 97
creator Duclot, Michel
Souquet, Jean-Louis
description Amorphous or glassy materials may be used as electrolyte or electrode materials for lithium primary or secondary batteries. A first generation proceeded from classical coin cells in which the organic electrolyte was replaced by a high lithium conductive glassy electrolyte. The solid components were assembled under isostatic pressure. The main advantages of such cells are a good storage stability and ability to operate until 200°C. Nevertheless, the high resistivity of the glassy electrolyte below room temperature and a limited depth for charge and discharge cycles makes these cells not competitive compared to conventional lithium-ion batteries. More promising, are the thin films solid state microbatteries realised by successive depositions of electrodes and electrolyte. The low resistance of the electrolyte amorphous layer allows cycling at temperatures as low as −10°C. The total thickness of thin film batteries, including packaging is less than 100 μm. A capacity of about 100 μAh cm −2 with over 10 4 charge–discharge cycles at 90% in depth of discharge is well suited for energy independent smart cards or intelligent labels, which represent for these devices a large and unrivalled market.
doi_str_mv 10.1016/S0378-7753(01)00641-3
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00418244v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775301006413</els_id><sourcerecordid>26750543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-3bd7d51091a7d34c29d45193e8c3194b8e2e5c3582c8b8e8efac8fc45c0c3b423</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-grAHEXtYnWySJutFivgFBQ_qyUNIs7M0stutybbgv3fWinjzlGTyzDvJw9gJhwsOfHL5DEKbXGslzoGPASaS52KHjbjRIi-0Urts9Ivss4OU3gGAcw0j9nbfuJQ-s9b1GINrUlZ3MWtCvwjrNpu7fihjusqwQd_Hzi-wDd412Sp2K4w93WVuWWUVboKnPdUooHVLOhyxvZoS8fhnPWSvd7cvNw_57On-8WY6y72c6D4X80pXikPJna6E9EVZScVLgcYLXsq5wQKVF8oU3tDBYO28qb1UHryYy0IcsvE2d-Eau4qhdfHTdi7Yh-nMDjUAyU0h5YYTe7Zl6f0fa0y9bUPy2DRuid062WKiFSgpCFRb0McupYj1bzIHO2i339rt4NQCt9_a7dB3-jPAJfJUR1IR0p9mLejXhF1vMSQxm4DRJh-QrFUhkmhbdeGfQV89JpdX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26750543</pqid></control><display><type>article</type><title>Glassy materials for lithium batteries: electrochemical properties and devices performances</title><source>ScienceDirect Journals</source><creator>Duclot, Michel ; Souquet, Jean-Louis</creator><creatorcontrib>Duclot, Michel ; Souquet, Jean-Louis</creatorcontrib><description>Amorphous or glassy materials may be used as electrolyte or electrode materials for lithium primary or secondary batteries. A first generation proceeded from classical coin cells in which the organic electrolyte was replaced by a high lithium conductive glassy electrolyte. The solid components were assembled under isostatic pressure. The main advantages of such cells are a good storage stability and ability to operate until 200°C. Nevertheless, the high resistivity of the glassy electrolyte below room temperature and a limited depth for charge and discharge cycles makes these cells not competitive compared to conventional lithium-ion batteries. More promising, are the thin films solid state microbatteries realised by successive depositions of electrodes and electrolyte. The low resistance of the electrolyte amorphous layer allows cycling at temperatures as low as −10°C. The total thickness of thin film batteries, including packaging is less than 100 μm. A capacity of about 100 μAh cm −2 with over 10 4 charge–discharge cycles at 90% in depth of discharge is well suited for energy independent smart cards or intelligent labels, which represent for these devices a large and unrivalled market.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/S0378-7753(01)00641-3</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Chemical Sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology ; Glass ; Lithium battery ; Material chemistry ; Microbatteries ; Thin films</subject><ispartof>Journal of power sources, 2001-07, Vol.97, p.610-615</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-3bd7d51091a7d34c29d45193e8c3194b8e2e5c3582c8b8e8efac8fc45c0c3b423</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,776,780,785,786,881,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1073467$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00418244$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Duclot, Michel</creatorcontrib><creatorcontrib>Souquet, Jean-Louis</creatorcontrib><title>Glassy materials for lithium batteries: electrochemical properties and devices performances</title><title>Journal of power sources</title><description>Amorphous or glassy materials may be used as electrolyte or electrode materials for lithium primary or secondary batteries. A first generation proceeded from classical coin cells in which the organic electrolyte was replaced by a high lithium conductive glassy electrolyte. The solid components were assembled under isostatic pressure. The main advantages of such cells are a good storage stability and ability to operate until 200°C. Nevertheless, the high resistivity of the glassy electrolyte below room temperature and a limited depth for charge and discharge cycles makes these cells not competitive compared to conventional lithium-ion batteries. More promising, are the thin films solid state microbatteries realised by successive depositions of electrodes and electrolyte. The low resistance of the electrolyte amorphous layer allows cycling at temperatures as low as −10°C. The total thickness of thin film batteries, including packaging is less than 100 μm. A capacity of about 100 μAh cm −2 with over 10 4 charge–discharge cycles at 90% in depth of discharge is well suited for energy independent smart cards or intelligent labels, which represent for these devices a large and unrivalled market.</description><subject>Applied sciences</subject><subject>Chemical Sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><subject>Glass</subject><subject>Lithium battery</subject><subject>Material chemistry</subject><subject>Microbatteries</subject><subject>Thin films</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-grAHEXtYnWySJutFivgFBQ_qyUNIs7M0stutybbgv3fWinjzlGTyzDvJw9gJhwsOfHL5DEKbXGslzoGPASaS52KHjbjRIi-0Urts9Ivss4OU3gGAcw0j9nbfuJQ-s9b1GINrUlZ3MWtCvwjrNpu7fihjusqwQd_Hzi-wDd412Sp2K4w93WVuWWUVboKnPdUooHVLOhyxvZoS8fhnPWSvd7cvNw_57On-8WY6y72c6D4X80pXikPJna6E9EVZScVLgcYLXsq5wQKVF8oU3tDBYO28qb1UHryYy0IcsvE2d-Eau4qhdfHTdi7Yh-nMDjUAyU0h5YYTe7Zl6f0fa0y9bUPy2DRuid062WKiFSgpCFRb0McupYj1bzIHO2i339rt4NQCt9_a7dB3-jPAJfJUR1IR0p9mLejXhF1vMSQxm4DRJh-QrFUhkmhbdeGfQV89JpdX</recordid><startdate>20010701</startdate><enddate>20010701</enddate><creator>Duclot, Michel</creator><creator>Souquet, Jean-Louis</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope></search><sort><creationdate>20010701</creationdate><title>Glassy materials for lithium batteries: electrochemical properties and devices performances</title><author>Duclot, Michel ; Souquet, Jean-Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-3bd7d51091a7d34c29d45193e8c3194b8e2e5c3582c8b8e8efac8fc45c0c3b423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Chemical Sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><topic>Glass</topic><topic>Lithium battery</topic><topic>Material chemistry</topic><topic>Microbatteries</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duclot, Michel</creatorcontrib><creatorcontrib>Souquet, Jean-Louis</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duclot, Michel</au><au>Souquet, Jean-Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glassy materials for lithium batteries: electrochemical properties and devices performances</atitle><jtitle>Journal of power sources</jtitle><date>2001-07-01</date><risdate>2001</risdate><volume>97</volume><spage>610</spage><epage>615</epage><pages>610-615</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Amorphous or glassy materials may be used as electrolyte or electrode materials for lithium primary or secondary batteries. A first generation proceeded from classical coin cells in which the organic electrolyte was replaced by a high lithium conductive glassy electrolyte. The solid components were assembled under isostatic pressure. The main advantages of such cells are a good storage stability and ability to operate until 200°C. Nevertheless, the high resistivity of the glassy electrolyte below room temperature and a limited depth for charge and discharge cycles makes these cells not competitive compared to conventional lithium-ion batteries. More promising, are the thin films solid state microbatteries realised by successive depositions of electrodes and electrolyte. The low resistance of the electrolyte amorphous layer allows cycling at temperatures as low as −10°C. The total thickness of thin film batteries, including packaging is less than 100 μm. A capacity of about 100 μAh cm −2 with over 10 4 charge–discharge cycles at 90% in depth of discharge is well suited for energy independent smart cards or intelligent labels, which represent for these devices a large and unrivalled market.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/S0378-7753(01)00641-3</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2001-07, Vol.97, p.610-615
issn 0378-7753
1873-2755
language eng
recordid cdi_hal_primary_oai_HAL_hal_00418244v1
source ScienceDirect Journals
subjects Applied sciences
Chemical Sciences
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
Glass
Lithium battery
Material chemistry
Microbatteries
Thin films
title Glassy materials for lithium batteries: electrochemical properties and devices performances
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glassy%20materials%20for%20lithium%20batteries:%20electrochemical%20properties%20and%20devices%20performances&rft.jtitle=Journal%20of%20power%20sources&rft.au=Duclot,%20Michel&rft.date=2001-07-01&rft.volume=97&rft.spage=610&rft.epage=615&rft.pages=610-615&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/S0378-7753(01)00641-3&rft_dat=%3Cproquest_hal_p%3E26750543%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-3bd7d51091a7d34c29d45193e8c3194b8e2e5c3582c8b8e8efac8fc45c0c3b423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26750543&rft_id=info:pmid/&rfr_iscdi=true