Loading…
Glassy materials for lithium batteries: electrochemical properties and devices performances
Amorphous or glassy materials may be used as electrolyte or electrode materials for lithium primary or secondary batteries. A first generation proceeded from classical coin cells in which the organic electrolyte was replaced by a high lithium conductive glassy electrolyte. The solid components were...
Saved in:
Published in: | Journal of power sources 2001-07, Vol.97, p.610-615 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c467t-3bd7d51091a7d34c29d45193e8c3194b8e2e5c3582c8b8e8efac8fc45c0c3b423 |
---|---|
cites | |
container_end_page | 615 |
container_issue | |
container_start_page | 610 |
container_title | Journal of power sources |
container_volume | 97 |
creator | Duclot, Michel Souquet, Jean-Louis |
description | Amorphous or glassy materials may be used as electrolyte or electrode materials for lithium primary or secondary batteries. A first generation proceeded from classical coin cells in which the organic electrolyte was replaced by a high lithium conductive glassy electrolyte. The solid components were assembled under isostatic pressure. The main advantages of such cells are a good storage stability and ability to operate until 200°C. Nevertheless, the high resistivity of the glassy electrolyte below room temperature and a limited depth for charge and discharge cycles makes these cells not competitive compared to conventional lithium-ion batteries. More promising, are the thin films solid state microbatteries realised by successive depositions of electrodes and electrolyte. The low resistance of the electrolyte amorphous layer allows cycling at temperatures as low as −10°C. The total thickness of thin film batteries, including packaging is less than 100
μm. A capacity of about 100
μAh
cm
−2 with over 10
4 charge–discharge cycles at 90% in depth of discharge is well suited for energy independent smart cards or intelligent labels, which represent for these devices a large and unrivalled market. |
doi_str_mv | 10.1016/S0378-7753(01)00641-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_00418244v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775301006413</els_id><sourcerecordid>26750543</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-3bd7d51091a7d34c29d45193e8c3194b8e2e5c3582c8b8e8efac8fc45c0c3b423</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWD9-grAHEXtYnWySJutFivgFBQ_qyUNIs7M0stutybbgv3fWinjzlGTyzDvJw9gJhwsOfHL5DEKbXGslzoGPASaS52KHjbjRIi-0Urts9Ivss4OU3gGAcw0j9nbfuJQ-s9b1GINrUlZ3MWtCvwjrNpu7fihjusqwQd_Hzi-wDd412Sp2K4w93WVuWWUVboKnPdUooHVLOhyxvZoS8fhnPWSvd7cvNw_57On-8WY6y72c6D4X80pXikPJna6E9EVZScVLgcYLXsq5wQKVF8oU3tDBYO28qb1UHryYy0IcsvE2d-Eau4qhdfHTdi7Yh-nMDjUAyU0h5YYTe7Zl6f0fa0y9bUPy2DRuid062WKiFSgpCFRb0McupYj1bzIHO2i339rt4NQCt9_a7dB3-jPAJfJUR1IR0p9mLejXhF1vMSQxm4DRJh-QrFUhkmhbdeGfQV89JpdX</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>26750543</pqid></control><display><type>article</type><title>Glassy materials for lithium batteries: electrochemical properties and devices performances</title><source>ScienceDirect Journals</source><creator>Duclot, Michel ; Souquet, Jean-Louis</creator><creatorcontrib>Duclot, Michel ; Souquet, Jean-Louis</creatorcontrib><description>Amorphous or glassy materials may be used as electrolyte or electrode materials for lithium primary or secondary batteries. A first generation proceeded from classical coin cells in which the organic electrolyte was replaced by a high lithium conductive glassy electrolyte. The solid components were assembled under isostatic pressure. The main advantages of such cells are a good storage stability and ability to operate until 200°C. Nevertheless, the high resistivity of the glassy electrolyte below room temperature and a limited depth for charge and discharge cycles makes these cells not competitive compared to conventional lithium-ion batteries. More promising, are the thin films solid state microbatteries realised by successive depositions of electrodes and electrolyte. The low resistance of the electrolyte amorphous layer allows cycling at temperatures as low as −10°C. The total thickness of thin film batteries, including packaging is less than 100
μm. A capacity of about 100
μAh
cm
−2 with over 10
4 charge–discharge cycles at 90% in depth of discharge is well suited for energy independent smart cards or intelligent labels, which represent for these devices a large and unrivalled market.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/S0378-7753(01)00641-3</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Applied sciences ; Chemical Sciences ; Direct energy conversion and energy accumulation ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology ; Glass ; Lithium battery ; Material chemistry ; Microbatteries ; Thin films</subject><ispartof>Journal of power sources, 2001-07, Vol.97, p.610-615</ispartof><rights>2001 Elsevier Science B.V.</rights><rights>2001 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-3bd7d51091a7d34c29d45193e8c3194b8e2e5c3582c8b8e8efac8fc45c0c3b423</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,309,310,314,776,780,785,786,881,23909,23910,25118,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1073467$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00418244$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Duclot, Michel</creatorcontrib><creatorcontrib>Souquet, Jean-Louis</creatorcontrib><title>Glassy materials for lithium batteries: electrochemical properties and devices performances</title><title>Journal of power sources</title><description>Amorphous or glassy materials may be used as electrolyte or electrode materials for lithium primary or secondary batteries. A first generation proceeded from classical coin cells in which the organic electrolyte was replaced by a high lithium conductive glassy electrolyte. The solid components were assembled under isostatic pressure. The main advantages of such cells are a good storage stability and ability to operate until 200°C. Nevertheless, the high resistivity of the glassy electrolyte below room temperature and a limited depth for charge and discharge cycles makes these cells not competitive compared to conventional lithium-ion batteries. More promising, are the thin films solid state microbatteries realised by successive depositions of electrodes and electrolyte. The low resistance of the electrolyte amorphous layer allows cycling at temperatures as low as −10°C. The total thickness of thin film batteries, including packaging is less than 100
μm. A capacity of about 100
μAh
cm
−2 with over 10
4 charge–discharge cycles at 90% in depth of discharge is well suited for energy independent smart cards or intelligent labels, which represent for these devices a large and unrivalled market.</description><subject>Applied sciences</subject><subject>Chemical Sciences</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><subject>Glass</subject><subject>Lithium battery</subject><subject>Material chemistry</subject><subject>Microbatteries</subject><subject>Thin films</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWD9-grAHEXtYnWySJutFivgFBQ_qyUNIs7M0stutybbgv3fWinjzlGTyzDvJw9gJhwsOfHL5DEKbXGslzoGPASaS52KHjbjRIi-0Urts9Ivss4OU3gGAcw0j9nbfuJQ-s9b1GINrUlZ3MWtCvwjrNpu7fihjusqwQd_Hzi-wDd412Sp2K4w93WVuWWUVboKnPdUooHVLOhyxvZoS8fhnPWSvd7cvNw_57On-8WY6y72c6D4X80pXikPJna6E9EVZScVLgcYLXsq5wQKVF8oU3tDBYO28qb1UHryYy0IcsvE2d-Eau4qhdfHTdi7Yh-nMDjUAyU0h5YYTe7Zl6f0fa0y9bUPy2DRuid062WKiFSgpCFRb0McupYj1bzIHO2i339rt4NQCt9_a7dB3-jPAJfJUR1IR0p9mLejXhF1vMSQxm4DRJh-QrFUhkmhbdeGfQV89JpdX</recordid><startdate>20010701</startdate><enddate>20010701</enddate><creator>Duclot, Michel</creator><creator>Souquet, Jean-Louis</creator><general>Elsevier B.V</general><general>Elsevier Sequoia</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope></search><sort><creationdate>20010701</creationdate><title>Glassy materials for lithium batteries: electrochemical properties and devices performances</title><author>Duclot, Michel ; Souquet, Jean-Louis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-3bd7d51091a7d34c29d45193e8c3194b8e2e5c3582c8b8e8efac8fc45c0c3b423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Chemical Sciences</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><topic>Glass</topic><topic>Lithium battery</topic><topic>Material chemistry</topic><topic>Microbatteries</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duclot, Michel</creatorcontrib><creatorcontrib>Souquet, Jean-Louis</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duclot, Michel</au><au>Souquet, Jean-Louis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glassy materials for lithium batteries: electrochemical properties and devices performances</atitle><jtitle>Journal of power sources</jtitle><date>2001-07-01</date><risdate>2001</risdate><volume>97</volume><spage>610</spage><epage>615</epage><pages>610-615</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>Amorphous or glassy materials may be used as electrolyte or electrode materials for lithium primary or secondary batteries. A first generation proceeded from classical coin cells in which the organic electrolyte was replaced by a high lithium conductive glassy electrolyte. The solid components were assembled under isostatic pressure. The main advantages of such cells are a good storage stability and ability to operate until 200°C. Nevertheless, the high resistivity of the glassy electrolyte below room temperature and a limited depth for charge and discharge cycles makes these cells not competitive compared to conventional lithium-ion batteries. More promising, are the thin films solid state microbatteries realised by successive depositions of electrodes and electrolyte. The low resistance of the electrolyte amorphous layer allows cycling at temperatures as low as −10°C. The total thickness of thin film batteries, including packaging is less than 100
μm. A capacity of about 100
μAh
cm
−2 with over 10
4 charge–discharge cycles at 90% in depth of discharge is well suited for energy independent smart cards or intelligent labels, which represent for these devices a large and unrivalled market.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/S0378-7753(01)00641-3</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2001-07, Vol.97, p.610-615 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_00418244v1 |
source | ScienceDirect Journals |
subjects | Applied sciences Chemical Sciences Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Exact sciences and technology Glass Lithium battery Material chemistry Microbatteries Thin films |
title | Glassy materials for lithium batteries: electrochemical properties and devices performances |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A52%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glassy%20materials%20for%20lithium%20batteries:%20electrochemical%20properties%20and%20devices%20performances&rft.jtitle=Journal%20of%20power%20sources&rft.au=Duclot,%20Michel&rft.date=2001-07-01&rft.volume=97&rft.spage=610&rft.epage=615&rft.pages=610-615&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/S0378-7753(01)00641-3&rft_dat=%3Cproquest_hal_p%3E26750543%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c467t-3bd7d51091a7d34c29d45193e8c3194b8e2e5c3582c8b8e8efac8fc45c0c3b423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=26750543&rft_id=info:pmid/&rfr_iscdi=true |